

Overview

- The Upshot
- State of the Water Sector
- Water Sector's Savings Potential
- Barriers to Capturing Full Savings
- Case Studies
- Tips for Driving Savings in the Water Sector

The Upshot

Water utilities can improve their financial performance through energy efficiency.

Water utilities in Central Texas are & plan to increase infrastructure spending over the next two decades

These investments offer opportunities to lower life-cycle energy costs

The savings potential is substantial – 10% to 35% in energy savings

Savings opportunities are the greatest on pumping energy

Renewable energy generation is also possible

Work with your design engineers, state agencies, & electric utilities to optimize your capital & life-cycle energy costs

The mechanical & electrical components of water treatment plants have useful lives of 15 to 25 years.

Water plants themselves are nearing the end of their useful lives.

Figure 3: Infrastructure Condition is Worsening Among U.S. Cities

Source: Merritt Research Services and Breckinridge Capital Advisors, as of 2015.

Estimated infrastructure investments range anywhere from \$384 billion to \$1 trillion over the next 10 to 20 years.

Exhibit 1.4: Total 20-Year Need by Project Type (in billions of January 2011 dollars)

Note: Numbers may not total due to rounding.

Despite these capital needs, water utilities are spending more on operating & maintenance expenses. Energy costs can account for as much as 55% of facility operating budgets.

Public spending on operations and maintenance rose at a faster rate than public spending on capital infrastructure for water and wastewater utilities

Between 1980 and 2014, real spending on O&M grew 126% while real spending on capital grew 22%, including a decline of 21% between 2009 and 2014

Total energy requirements for water sourcing, treatment, & distribution can range from 1,000 kWh to 2,500 kWh per MG. Larger systems are typically more energy efficient than smaller ones due to the scalability of processes.

Energy Intensity of Water Supply Processes

Energy Intensity by System Size

Average Daily Flow Range (MGD)	Energy Use Intensity (kWh/MG)	Water Main length (miles)	Distribution Pressure (psia)	Source Water Distribution		
				Ground Water	Surface Water	Purchased Water
< 3	2,000	126	67	32%	41%	27%
3-5	1,400	138	69	31%	32%	36%
5-20	1,600	346	72	28%	39%	33%
20-600	1,500	2,700	62	7%	68%	25%

Data source: Lawrence Berkeley National Laboratories, "Market Profiles Used in Energy Star's Portfolio Manager for Water and Wastewater Utilities", unpublished data from October 2012.

Source: Steven Jones & Robert Sowby, Quantifying Energy Use in the U.S. Public Water Industry – A Summary; C. Arzbaecher et al, Electricity Use & Management in the Municipal Water Supply & Wastewater Industries

Given that the average plant lasts 40-50 years, failing to optimize energy efficiency will result in a huge "lost opportunity." It's much less expensive to design with energy efficiency than to retrofit later.

Water Sector's Savings Potential

The majority of energy in water treatment goes to pumping – finished water, raw water, backwash water, & residuals.

TYPICAL WATER TREATMENT ENERGY USE DISTRIBUTION

Water Sector's Savings Potential

With pumping representing 86% of total energy use, enhanced pumping technologies – notably high efficiency motors, VFDs, & pump system optimization – provide the greatest savings potential.

Water Treatment & Distribution Measures

Applicable End Use	Measure name	Total % savings	% savings of the end use	
	High efficiency pump/motor system	1.3% - 7.6%	10% - 30%	
Pump / motor	Pump modification	0.5% - 7.2%	15% - 30%	
	Variable frequency drive	0.4% - 4.2%	10% - 20%	
	Pipeline optimization		5% - 20%	
Distribution	Advanced SCADA systems	10% - 20%		
	Automatic meter reading (AMR) /Leak detection integration		5% - 15% (of water supply energy)	
Treatment processes	Advanced treatment processes (e.g., advanced membrane, UV, reverse osmosis)		10% - 50%	
HVAC	Optimized and efficient system			
Electric demand management	Electric demand management	0.7% - 7.3%		
Lighting	Efficient lighting fixtures (LED) with sensors	0.5% - 2.9%		

Water Sector's Savings Potential

There are also opportunities for the water sector to generate power.

Floating Photovoltaics

Power Generating Watermains

Water Sector's Savings Potential

The water sector's energy savings potential is significant.

10% to 35% energy savings

9,000 to 31,000 GWh

savings potential nationwide

Equivalent to powering

1.0 to 2.9 million

American households annually

Most energy efficiency programs are focused on "standard" / "prescriptive" savings.

KCP&L's program history savings – from water customers

Water infrastructure projects involve long project cycles that can range from 3 to 8 years in total.

PLANNING & FUNDING

12 TO 24 MONTHS

Design & Permitting

12 to 24 months

CONSTRUCTION

12 TO 48 MONTHS

Project Completion

3 to 8 years

The bidding process for water projects can discourage the inclusion of efficiency measures, which leads to a "blame game" between the municipality sponsoring the project & the engineering firm hired to design it.

Primary driver in the water sector is public health & infrastructure replacement – energy costs are less critical.

Issues facing the water industry in 2017 - Ranked in order of importance

Rank	Category	Score	% Ranked Critically Important
1	Renewal and replacement of aging water and wastewater infrastructure	4.53	63%
2	Financing for capital improvements	4.42	59%
3	Long-term water supply availability	4.39	57%
4	Public understanding of the value of water systems and services	4.34	54%
5	Public understanding of the value of water resources	4.22	45%
6	Watershed/source water protection	4.18	46%
7	Emergency preparedness	4.10	37%
8	Cost recovery (pricing water to accurately reflect its true cost)	4.04	35%
9	Public acceptance of future water and wastewater rate increases	4.01	34%
10	Water conservation/efficiency	4.00	36%
11	Groundwater management and overuse	3.98	35%
12	Aging workforce/anticipated retirements	3.98	40%
13	Asset management	3.91	26%
14	Talent attraction and retention	3.91	30%
15	Improving customer, constituent, and community relationships	3.91	29%
16	Data management	3.91	29%
17	Governing board acceptance of future water and wastewater rate increases	3.91	32%
18	Drought or periodic water shortages	3.90	33%
19	Water loss control	3.90	26%
20	Compliance with current regulations	3.87	26%
21	Compliance with future regulations	3.85	26%
22	Energy use/efficiency and cost	3.82	22%
23	Certification and training	3.81	24%
24	Expanding water reuse/reclamation	3.79	31%
25	Water rights	3.72	30%
26	Cyber-security issues	3.70	25%
27	Financing for water research	3.64	23%
28	Physical security issues	3.59	19%
29	Water quality issues from premise plumbing systems	3.57	20%
30	Climate risk and resiliency	3.53	23%

Source: AWWA's 2017 State of the Water Industry Report

Market Study: Kansas City Power & Light

- Context: KCP&L wanted to explore the savings potential associated with the water-energy nexus across multiple market segments.
- Solution: KCP&L teamed with AIQUEOUS to perform a water-energy nexus market study, which included a case study on the energy efficiency opportunities at a 1 MGD water treatment plant.
- Results: AIQUEOUS recommended the replacement of pumps & motors (average efficiency of 73%) with high efficiency alternatives to achieve a possible 90% efficiency. These efforts would translate to 30,103 kWh savings per year (or 17.8% of total plant energy consumption).

Energy Audit: Missouri American Water

- Context: As part of its rate case, Missouri American Water agreed to evaluate energy efficiency opportunities across its water treatment & distribution systems.
- Solution: Missouri American Water teamed with AlQUEOUS to perform ASHRAE Level 1 energy audits at four water systems & identify specific efficiency opportunities to help cut operating costs.
- Results:

Energy Efficiency Opportunities Identified by AIQUEOUS

- Replace pumps and motors to high efficiency motors/pumps to achieve a possible
 90% efficiency
- Install variable frequency drives to increase pumping efficiency on wells
- Optimize pump operation by trimming the impellors or using a pump system optimization control system
- Optimize piping to limit energy consumption due to friction (e.g., increase pipe diameter, plastic instead of steel pipe, use of long-radius elbows instead of 90 degree angle fittings)
- Install turbines within the piping system to recover energy from excess pressure in the pipeline
- · Eliminate winter energy overconsumption

Program Design: AEP Ohio's Water / Wastewater Treatment User Group

- Context: AEP Ohio saw limited participation from the water & wastewater sector in its efficiency programs.
- Solution: AEP Ohio created the Water / Wastewater Treatment User Group to help educate the segment on efficiency technologies & energy savings potentials. Workshops and webinars were held to engage with system operators, municipal decision-makers, engineering firms, & trade allies.
- Results:
 AEP Ohio achieved
 a considerable increase
 in program participation
 over the first 6 years.
 Forming a user group
 was critical to the utility's
 success.

Technology Vendor: **Specific Energy (Georgetown, TX)**

- Context: Specific Energy worked with Aqua Water Supply Corporation in Texas to improve the operational efficiency of several of the system's VFD pumps.
- Solution: Specific Energy employed its Optimization software technology to maximize efficiency of the pumps by continually adjusting their speeds based on system conditions.

 Results: Aqua saw a 25% reduction in energy consumption of one its well pumps. Aqua also achieved a 16% energy reduction at one of its pump stations.

Tips for Driving Savings in the Water Sector

Work with Energy Utilities & Agencies

Electric utility efficiency programs need to be cost-effective in terms of savings as compared to incentives

- In Texas, Transmission & Distribution Utilities offer energy efficiency programs in deregulated markets
- Find out what programs and services your utility offers
- Bring them in *early & often* to talk about incentives & savings approaches

State agencies offer financial assistance for reducing energy costs

- State Energy Conservation Office's LoanSTAR program
- TWDB's "green elements" for Drinking Water State Revolving Fund Loans

Tips for Driving Savings in the Water Sector

Create an Energy Management Framework in your organization

CONDUCT A FACILITY ENERGY ASSESSMENT

- Establish a benchmark of energy use systemwide
- Begin dialogue with energy provider on efficiency opportunities & available resources/assistance programs

DEVELOP AN ENERGY MANAGEMENT PLAN

- Perform an energy audit to identify efficiency opportunities
- Develop specific targets: efficiency measures, efficiency goals, budgets, financing options, procurement schedule, etc.

IMPLEMENT AN ENERGY MANAGEMENT PROGRAM

- Ensure <u>RFQs properly address</u> energy efficiency objectives
- Develop process for monitoring program progress
- Develop metrics for assessing energy savings & program success

Source: Water Research Foundation, <u>Energy Efficiency Best Practices for North American Drinking Water Utilities</u>; Energy Sector Management Assistance Program's A Primer on Energy Efficiency For Municipal Water & Wastewater Utilities

Tips for Driving Savings in the Water Sector

Work with your engineering team

Remember that energy savings interact with system performance, & your design engineers focus on system performance

Look for successful case studies

Put in place the right pilot or test conditions to compare energy savings with treatment & distribution effectiveness

Build energy management into your capital projects

QUESTIONS

Jonathan Kleinman | President

Certified Energy Manager, LEED-Accredited Professional

ikleinman@AIQUEOUS.com

(512) 745-3606

