Language and Academic Outcomes for Early-Implanted Children with Bilateral versus Unilateral Cochlear Implants

Julia Sarant, David Harris, Lisa Bennet, Laura Sinclair, Mansze Mok, Manasi Canagasabey, Sharyn Bant, Robert Cowan

Linkage project funded by the Australian Research Council & Cochlear Ltd
Primary Author: Dr Julia Sarant
Presenting Author: Prof Robert Cowan

The University of Melbourne, Department of Audiology and Speech Pathology receives research funding from Cochlear Limited.
5-year longitudinal study (2009-2014):

- To investigate whether bilateral CIs at a young age give children a greater ability to learn.
- To provide some of the first data worldwide comparing the effects of two CIs on language, social & academic outcomes.
- Do children with two CIs have:
 - better language outcomes?
 - better psychosocial outcomes?
 - better academic outcomes?
 - less disability, in terms of functional listening skills in daily life?
Selection Criteria

- First CI by 3.5 years
- Second CI under 6 years
- Aged 5-8 years at some time during the study
- Speak English as their primary language at home (some used supplementary sign)
- Normal cognitive ability (IQ)
- No other disabilities that would prevent completion of assessment tasks
• Are outcomes age-appropriate?
• Is there a significant difference in language outcomes between children with 1 & 2 CIs?
• What are the predictive factors for language outcomes?
 – N = 91 (44 boys, 47 girls) aged 5-8 years
 – 67 bilateral CIs
 – 24 unilateral CIs (19/24 used a HA also)
<table>
<thead>
<tr>
<th>Hearing</th>
<th>Parenting Style</th>
<th>Child Characteristics</th>
<th>Family Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age @ CI1 (yrs)</td>
<td>Parent involvement</td>
<td>Birth order</td>
<td>Parent education</td>
</tr>
<tr>
<td>Age @ CI2 (yrs)</td>
<td>Screen time</td>
<td>IQ</td>
<td>FH hearing loss</td>
</tr>
<tr>
<td>CI experience</td>
<td>Adult reading time</td>
<td>Birth weight (kg)</td>
<td>FH reading difficulties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gender</td>
<td>FH speech difficulties</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age @ diagnosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine motor skills</td>
<td></td>
</tr>
</tbody>
</table>
N = 56 (41 bilateral, 15 unilateral)
Language at 8 years: CELF-4

N = 35, p = 0.002 (EL), 0.004 (CL)

Bilateral Unilateral
Vocabulary (PPVT): All children

N = 91, p = 0.0004

Bilateral

Unilateral
Language: Predictive Factors

<table>
<thead>
<tr>
<th>Predictive Factors</th>
<th>5 years</th>
<th>8 years</th>
<th>Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral CIs</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Younger @ CI2</td>
<td>√</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Younger @ CI1</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher parent involvement</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Less screen time</td>
<td>√</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>More adult reading time</td>
<td>√</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Earlier birth order</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Higher IQ</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Higher birth weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female gender</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Higher parent education</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>FH of hearing loss</td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

√ = p<0.05
Age appropriate?

- Group mean scores always within 1SD of mean for bilateral children, but not for younger (5yo) unilateral children

Bilateral vs Unilateral:

- Significantly better language outcomes for older (8yo) children, but not for younger children
- Bilateral use predicted **better language outcomes** (moderated by age at CI2)

Predictive factors:

- Outcomes were significantly predicted by factors related to parenting, child characteristics & family background

 59-69% of variance predicted by the regression models
Are outcomes age-appropriate?

Is there a significant difference in academic outcomes for children with 1 & 2 CIs?

What are the predictive factors?
 - N = 44 (23 boys, 21 girls) aged 8 years
 - 34 bilateral CIs
 - 10 unilateral CIs (7/10 used Has also)
• Wechsler Individual Academic Achievement Test
• Broad range of academic skills in 4 composite areas:
 – Oral Language
 – Written Language
 – Maths
 – Reading
• Age-based standard scores
• 1.5 - 2 hours administration time
Academic Outcomes

N = 44

- Bilateral
- Unilateral
WIAT-II: Predictive Factors

<table>
<thead>
<tr>
<th>Predictive Factors</th>
<th>Oral Lang</th>
<th>Maths</th>
<th>Written Lang</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral CIs</td>
<td>√</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Younger @ CI2</td>
<td>√</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Younger @ CI1</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Hearing aid use</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Higher parent involvement</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Earlier birth order</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Higher IQ</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Higher birth weight (kg)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher parent education</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Time spent reading</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FH of speech/reading difficulties</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\sqrt {p < 0.05} \]
Children with CIs can achieve language & academic outcomes within the normal range

Bilateral CIs predict significant benefits to language & academic development

Bilateral benefit across all outcomes is maximized with earlier age at implantation.

Practical findings of clinical relevance include the importance of parental involvement & of children developing a regular reading habit

Hearing aid use before & after implantation very important

Although we have come a long way over the past decade, there is still room for improvement
• Participating families

• Collaborative centres:
 Melbourne Cochlear Implant Clinic (RVEEH), The Shepherd Centre, The Hear & Say Centre, The Cora Barclay Centre, Sydney Cochlear Implant Clinic, The Women’s & Children’s Hospital, Hearing House, New Zealand

• LOCHI Study

• Australian Research Council & Cochlear Ltd
Julia Sarant, PhD
Senior Research Fellow
Department of Audiology & Speech Pathology
The University of Melbourne
Australia
jsarant@unimelb.edu.au
+61 03 9035 5325