Development of a Community-Based Clinical Registry for Patients with Cochlear Implants

Jed Grisel, MD
Terry Griffin, PhD
October 15, 2015
Disclosures

• 501(c)3
• Supporters
 – Cochlear
 – Advanced Bionics
 – Wichita Falls Area Community Foundation
 – United Regional Health Care System
 – Midwestern State University
 – Echometer
 – J.S Bridwell Foundation
 – Bryant Edwards Foundation
 – Jim & Vicky McCoy
 – Board Members
Background

• Why is better data needed in the Cochlear Implant Community?
 – Reach new markets
 – Affect public policy
 – Negotiate with payers
 – Improve care for patients
How is Data Managed?

• Electronic Health Records
 – Advantages
 • Clinical documentation, billing
 – Disadvantages
 • Siloed
 • Non-standardized
 • Myopic view of patient’s journey
How is Data Managed?

• Patient Registry
 – A patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves a predetermined scientific, clinical, or policy purpose(s).

 (AHRQ.gov)
Data management technology in a value-driven world

- HIPAA-secure
- Cloud-based
- Built around collaboration
- Patient centered – data follows patients
- Uniquely identifies patient/provider/organization
- Encourages evidence-based care
Methods

• Cochlear implant data management platform

Data Elements

• Supported by literature
 – Elements evaluated based on
 • Feasibility
 • Keeping data set concise
 • Value to body of knowledge
Methods

• Logistics
 – Data entry must not create double work
 – Integrated into workflow to minimize disruptions and ideally saves the clinician time

• Data Access
 – Access to data granted to providers involved in patient’s care (Care Team)
Methods

- Technical Requirements: Implementation
 - RESTful API
 - Tokenized access (session management)
 - Widget based system
 - UI/UX design based on workflow and for throughput
 - Designed for Data aggregation
 - Input Validation
 - NIST Level II Security
 - Auditing and Logging
Methods

• Technical Requirements: Security
 – Encrypted Disk Storage and Database
 – Two Factor Authentication
 – VPN (Secure Socket Access)
 – Firewalled
 – Intrusion Detection
 – Penetration Testing
 – Raid (Redundant Storage)
Results

• Care Teams

 – Maintain HIPAA security by granting access only to those involved in patient’s care

 – Use “Invitation” and “Accept/Reject” procedure
Care Teams
Results

• Data Input
 – Care Phases (Milestone Visits)
 • Key Information organized according to patient’s progress along their implant journey

- To view all data elements, please visit
 - aii-hermes.org/dataElements.php
Input: Care Phases
Results

• Data Input
 – Toolbar (Non-Milestone Visits)
 • Demographics
 • Syndromes/Etiologies
 • Surgeries
 • Medications
 • Hearing Aid Information
 • Audiometric Testing (Non-Milestone)
 • Speech and Language Development Information
Input: Toolbar
Results

• Data Output

– Patient Reports
Output: Patient Reports
Results

- Data Output

- Data Query Tool

<table>
<thead>
<tr>
<th>Patient (Event)</th>
<th>Demographics: Date of Birth (DOB)</th>
<th>Demographics: Sex</th>
<th>Demographics: Race</th>
<th>Demographics: Body Mass Index (BMI)</th>
<th>Demographics: Height (in inches)</th>
<th>Demographics: Weight (in pounds)</th>
<th>Non-milestone: What is the patient's primary insurance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams, Andy</td>
<td>1976-06-01</td>
<td>Male</td>
<td>White</td>
<td>14.35</td>
<td>14</td>
<td>99</td>
<td>Medicare</td>
</tr>
<tr>
<td>(N/A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adams, Andy</td>
<td>1976-06-01</td>
<td>Male</td>
<td>White</td>
<td>23.01</td>
<td>55</td>
<td>99</td>
<td>Medicare</td>
</tr>
<tr>
<td>(N/A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adams, Amy</td>
<td>2015-08-24</td>
<td>Female</td>
<td>White</td>
<td>33.18</td>
<td>56</td>
<td>148</td>
<td>Medicare</td>
</tr>
<tr>
<td>(Right CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auditory Implant Initiative
Research • Collaboration • Outreach
Output: Data Query Tool
Results

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participating Facilities</td>
<td>11 (7 active, 4 pending)</td>
</tr>
<tr>
<td></td>
<td>(5 academic, 6 private)</td>
</tr>
<tr>
<td>Patients recorded</td>
<td>79</td>
</tr>
<tr>
<td>Total annual CI caseload</td>
<td>~520</td>
</tr>
<tr>
<td>States Represented</td>
<td>4 (Texas, California, Arizona, Ohio)</td>
</tr>
<tr>
<td>Services Represented</td>
<td>Surgery, Audiology, Speech, Education</td>
</tr>
</tbody>
</table>

States Represented: Texas, California, Arizona, Ohio

Services Represented: Surgery, Audiology, Speech, Education

Auditory Implant Initiative
Research • Collaboration • Outreach
Conclusion

• As we re-imagine how data is managed, we can
 – Improve collaboration among providers
 – Arm our cause with robust datasets that affect policy
 – Improve care for our patients
Acknowledgements

• Anne Lam
 – Aii Executive Director & Database Manager

• University of Southern California Caruso Family Center for Childhood Communication