Benefits of Cochlear Implantation Among Adults and Children with Unilateral Hearing Loss

Douglas P. Sladen, Ph.D.
Mayo Clinic
Rochester, MN
Disclaimer

I declare that I have no proprietary interest in any product, instrument, device, service, or material related to this presentation.

I have previously served on the audiology advisory board for MedEl Corporation.

Senior author (CLWD) is on the surgical advisory board for Cochlear, AB, and MEDEL.

I will be discussing off-label use of a cochlear implant.
Background

- Improved outcomes in speech understanding and localization (Firszt et al., 2012; Haensen et al., 2013; Blascoe & Redleaf, 2014)

- Binaural advantage
 - Two ears are better than one for listening in noisy situations (Blonkhorst & Plomp, 1988; Licklider, 1948)

- Binaural disadvantage, interference
 - Overall performance is worse when listening with interaural asymmetries compared to listening with the better hearing ear (Shinn-Cunningham et al., 2001; Rothpletz et al., 2004)
Specific aims

• **Aim 1.** Does cochlear implantation restore speech understanding abilities to the ear implanted among adults and children with unilateral hearing loss (UHL)

• **Aim 2.** Does cochlear implantation result in a binaural advantage among adults and children with UHL: improved speech understanding in diffuse noise, improved self perceived spatial hearing

• **Aim 3.** Does cochlear implantation reduce overall listening effort for adults and children with UHL
Participants

- **Inclusion**
 - Children 7 years of age and older
 - Single words score less ≤ 50%, ear to be implanted
 - Onset of UHL greater than 6 months and less than two years
 - Contralateral hearing thresholds ≤ 30 dB HL through 2K Hz
 - Adults 18 years of age and older
 - Single word score ≤ 50%, ear to be implanted
 - Onset of UHL greater than 6 months and within two years
 - Contralateral hearing thresholds ≤ 30 dB HL through 2K Hz

- **Exclusion**
 - Known cognitive deficits
Test Measures

• Speech understanding in quiet
 • Preoperative aided (presented at 60 dB SPL, contra ear masked) post-activation (direct audio input, comfortable loudness level)
 • CNC words (Peterson & Lehiste, 1962)
 • AzBio sentences (Spahr & Dorman, 2012)
 • Speech understanding in noise
 • HINT sentences adaptively (Nilsson et al., 1998) in an R-SPACE 8-speaker array
 • Questionnaires
 • Speech Spatial Hearing Questionnaire-Comparative (SSQ-C; Noble & Gatehouse, 1990)
 • Listening effort
 • Dual task paradigm

10/15/15
ACI, Washington DC, 2015
Speech, Spatial and Qualities of Hearing Questionnaire – Comparative (SSQ-C)
Listening effort

• Dual task paradigm
 • Primary task (speech in noise)
 • CNC words, 0° azimuth
 • Restaurant babble, R-SPACE 8-speaker array, 60 dB SPL(A) with 0 dB SNR
 • Secondary task (reaction time)
 • Button response to a square presented amongst long and tall rectangles
<table>
<thead>
<tr>
<th></th>
<th>Pre-operative</th>
<th>3-months post activation</th>
<th>6-months post activation</th>
<th>12-months post activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC words</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AzBio Sentences</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Speech in noise (R-SPACE)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SSQ-C</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Listening Effort</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Participant</td>
<td>Age</td>
<td>Ear</td>
<td>Device</td>
<td>3-month</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>---------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>32.0</td>
<td>Right</td>
<td>Concert Flex28</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>55.0</td>
<td>Left</td>
<td>Concert Flex28</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>40.0</td>
<td>Right</td>
<td>Concert Flex28</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>39.0</td>
<td>Left</td>
<td>Concert Flex24</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>49.0</td>
<td>Right</td>
<td>Cochlear CI422</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>47.0</td>
<td>Right</td>
<td>Concert Flex28</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>35.0</td>
<td>Left</td>
<td>Cochlear CI422</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>61.0</td>
<td>Right</td>
<td>Cochlear CI422</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>55.0</td>
<td>Left</td>
<td>Concert Flex28</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>15.0</td>
<td>Right</td>
<td>Concert Flex28</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>36.0</td>
<td>Right</td>
<td>Cochlear CI422</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>11.0</td>
<td>Right</td>
<td>Cochlear CI24RE(CA)</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>40.0</td>
<td>Left</td>
<td>AB MidScala</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>49.0</td>
<td>Right</td>
<td>Cochlear CI422</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>60.0</td>
<td>Right</td>
<td>Cochlear CI422</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>39.0</td>
<td>Left</td>
<td>Synchrony Flex 28</td>
<td></td>
</tr>
</tbody>
</table>

11 - 61 years mean 41 years
10 Right
6 Left
8 MED EL
7 Cochlear
1 AB
Study Participants (n=16)

Ear implanted

Ear not implanted
Results: Speech Understanding

- **Pre**: CNC SSD 43.7%, AzBio SSD 9.1%, CNC Bilateral 14.2%
- **3 Mos N=13**: CNC SSD 54.0%, AzBio SSD 30.0%, CNC Bilateral 39.9%
- **6 Mos N=11**: CNC SSD 60.3%, AzBio SSD 58.0%, CNC Bilateral 72.5%
- **12 Mos N=7**: CNC SSD 48.8%, AzBio SSD 66.0%, CNC Bilateral 63.0%
Results: Speech in Noise, 6 mos, n = 11

R-SPACE HINT

* p = .03

-0.7

1.2

Cl On

Cl Off

dB SNR
Results: Self perceived benefit; SSQ-C (n= 11)

-5
-4
-3
-2
-1
0
1
2
3
4
5

Much Better

Much Worse

Speech
Spatial
Qualities

ACI, Washington DC, 2015
Results: Self perceived benefit; tinnitus (n= 14)
Results: Listening effort (n=7)

CNC Words

Percent (%) correct

Device On
Quiet
0 dB SNR
Device Off
Results: Listening effort, 12 mos (n=7)

Reaction Times

- Baseline
- Device On
- Device On
- Device Off

Quiet

0 dB SNR
Summary

• Preliminary results demonstrate that cochlear implantation for adults with unilateral hearing loss allows:
 • improved speech understanding for the implanted ear, though mean percent scores are lower than mean percent correct scores of adults with bilateral hearing loss
 • Improved speech understanding in noise measured in diffuse noise
 • Improved self perceived benefit for tinnitus and SSQ-C
 • Negligible benefit for listening effort

ACI, Washington DC, 2015
Questions & Discussion