Assessing Audiovisual Speech Perception in Adults with Hearing Loss: Effects of SNR

KAREN ILER KIRK, PH.D., CCC-SLP*

SHAHID AND ANN CARLSON KHAN PROFESSOR AND HEAD

DEPARTMENT OF SPEECH AND HEARING SCIENCE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

DISCLOSURE: Test materials described in this presentation are licensed to G.N. Otometrics through The University of Iowa

Work supported by grants NIDCD Grants R01 DC 008875 and P50 DC000242
Collaborators

The University of Iowa
- Karen Iler Kirk, PhD (PI)
- Lindsay Prusick, AuD
- Virginia Driscoll, MA
- Nathaniel Wisecup, BA
- Lauren Diamond, BA
- Lauren Dowdy, BA
- Ruth Flaherty, BA

House Research Institute, Los Angeles
- Laurie Eisenberg, PhD (PI)
- Amy Martinez, MA
- Dianne Hammes Ganguly, MA

Children’s Memorial Hospital, Chicago
- Nancy Young, MD (PI)
- Susan Stenz, AuD
- Lisa Weber, AuD
- Iguehi James, MPH

Washington State University
- Brian French, PhD (PI)
- Chad Gotch, MS

University of Illinois
- Michael Novak, MD
- Jean Thomas, AuD
- Michael Hudgins, BA
Introduction

Listeners must extract linguistic message from highly variable acoustic speech signal

Variability introduced by:

- Talker characteristics - gender, age, dialect and speech rate
- Environment – noise, reverberation

Speech perception in noise is difficult for CI users

- Particularly challenging for CI users
- Addition of visual cues provides substantial gain in speech recognition

Few centers routinely test in both A and AV conditions
Multimodal Lexical Sentence Test (MLST-A™)

30 lists of 12 sentences
- 10 talkers
- 3 key words per sentence
- Key words in each sentence drawn from the same lexical category

Strong Psychometric principles
- Lists are reliable and equivalent within each format: V, A, AV
Purposes

To examine speech recognition performance in adults CI users as a function of:

- Presentation Format
 - Signal-to-Noise Ratio
 - Group
 - CI only
 - CI + HA

To evaluate AV enhancement as a function of SNR
Participants

<table>
<thead>
<tr>
<th></th>
<th>CI Users (n=10)</th>
<th>CI+HA Users (n=9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age at Test</td>
<td>50.2 years old</td>
<td>45.8 years old</td>
</tr>
<tr>
<td>CI Configuration</td>
<td>Unilateral – 4</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Bilateral - 6</td>
<td></td>
</tr>
<tr>
<td>Mean Length of Use of Sensory Device</td>
<td>8.44 years</td>
<td>4.55 years</td>
</tr>
<tr>
<td>Gender</td>
<td>Males - 4</td>
<td>Males - 4</td>
</tr>
<tr>
<td></td>
<td>Females - 6</td>
<td>Females – 5</td>
</tr>
</tbody>
</table>
Procedures

Speech administered at 60 dBA SPL

Each participant tested in A and AV formats
- Quiet
- SNRs: -5, 0, +5, +10
- 2 lists per condition (2 formats X 4 SNRS = 8 lists)

Verbal responses scored as % key words correct

Logistic regression computed to estimate Speech Recognition Threshold
Results: Presentation Format

Presentation Format

Percent Correct

Format

A

AV
Results: Signal-to-Noise Ratio (SNR)
Results: Group by SNR by Format

CI Group

CI + HA Group

Percent Correct

SNR

-5 0 5 10 Q

Percent Correct

SNR

-5 0 5 10 Q

A only A + V

A only A + V
Results: SRT Performance Intensity Graphs

<table>
<thead>
<tr>
<th></th>
<th>CI</th>
<th>CI + HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A only</td>
<td>7.8 dB</td>
<td>12.0 dB</td>
</tr>
<tr>
<td>A + V</td>
<td>1.0 dB</td>
<td>.7 dB</td>
</tr>
</tbody>
</table>
Audiovisual Gain

\[R_{a} = \frac{(AV-A)}{(100-A)} \]

Relative gain in accuracy in AV condition relative to A only

Used by Lachs et al. (2001) to examine AV speech perception in children with CIs
Ra by SNR

Ra by Signal-to-Noise Ratio (SNR)
Conclusions

The MLST-A™
- Incorporates “real-world” stimulus variability
 - Multiple talkers
 - Different presentation formats

The addition of visual cues enhances spoken word recognition
- AV enhancement varies by SNR
 - Enhancement was greatest when CI users under more favorable SNRs

AV testing may better predict communication skills in difficult listening environments