ACRODeck

Low Grade Gliomas

Qateeb Khan, M.D.

Introduction to ACRODeck

 The goal of ACRODeck is to introduce standard treatments of oncologic malignancies for early radiation oncology residents

 Please note that there is often considerable variation in standard treatment recommendations

 Moreover, the landscape of oncology is ever-changing; for practice changing landmark studies and feedback, please email: resident@acro.org **ACRODeck**

Table of Contents

- 1. Clinical Presentation and Differential Diagnosis
- 2. Initial Workup
- 3. Staging
- 4. Pathology
- 5. Treatment Summary
 - Risk Stratification
 - Surgery
 - Chemotherapy
 - Radiation
- 6. Prognosis
- 7. Review Questions

ACRODeck

Clinical Presentation and Differential Diagnosis

- As with any CNS lesion, the location of the lesion will determine the clinical presentation
 - LGGs most commonly present with seizures
 - Other symptoms may include neurologic deficits, headaches, altered mental status, motor and sensory deficits, nausea and vomiting
- Differential Diagnosis:
 - Glioma
 - Ependymoma
 - Lymphoma
 - Brain metastasis
 - Intracranial abscess
 - Empyema
 - Multiple sclerosis

In contrast to higher grade
tumors, LGGs are more prevalent
in the younger adult population

Initial Workup

- H/P
- CBC and CMP
- MRI brain with and without contrast (obtain one within 24-48 hours of resection as well)
 - Classic findings: T2 hyperintense; minimal contrast enhancement (apart from pilocytic astrocytomas)

MRI Sequence	Appearance	Visualization of
T1	Isointense/Hypointense	Anatomy
T1c	Minimal Contrast Enhancement	Pilocytic Astrocytomas
T2 / FLAIR	Hyperintense	Tumor

- Consider steroids and anti-epileptics
- Maximal safe resection
 - Molecular testing includes IDH, 1p19q codeletion, BRAF

In contrast to higher grade
tumors, most LGGs have minimal
contrast enhancement

Radiopaedia

Most glial neoplasms in adults are WHO grade 4

Staging

Primary CNS tumors are graded, not staged

Tumor	WHO Grade
Pilocytic astrocytoma (and others)	1
Diffuse low-grade glioma	2
Anaplastic glioma	3
Glioblastoma Multiforme	4

ACRODeck: LGG

Pathology

<u>Historical trials did not use</u> <u>modern molecular classification</u> <u>(notably IDH status)</u>

- Low grade gliomas are a heterogenous group of tumors
- They are broadly classified into:
 - WHO grade 1 (noninfiltrative tumors)
 - WHO grade 2 (infiltrative/diffuse tumors)
- Traditionally, histology and MEAN criteria were used to characterize these tumors
 - Mitotic index, endothelial proliferation, nuclear atypia, and necrosis
- Now, we are moving towards an era of incorporating molecular classification into WHO grading (see 2021 update)

Astrocytomas: 1p19q intact

Oligodendrogliomas: 1p19q co-deleted

Treatment Summary: Low Grade Gliomas

Risk Stratification

NCCN utilizes the RTOG risk factors

RTOG Risk Factors: either one of these risk factors leads to a categorization of high risk

- Age greater than 40
- Subtotal resection

EORTC (Pignatti Risk Factors): need three of these risk factors for a categorization of high risk

- Age greater than 40
- Tumor that crosses midline
- Tumor size greater than 6 cm
- Astrocytoma histology
- Neurologic compromise prior to surgery

Per NCCN, there are certain low risk histologies which can be observed (even after an incomplete resection)

- Pilocytic Astrocytomas
- Pleomorphic Xanthoastrocytomas
- Subependymal Giant Cell Astrocytomas
- Gangliogliomas

Surgery

As with other gliomas, a maximal safe resection is indicated

- A gross total resection is prognostic for survival
- A simple biopsy has a high risk of underrating tumor grade, as gliomas tend to be quite heterogenous

As these patients have a long natural history, doing no harm is of utmost importance!

TMZ is better tolerated than PCV

Chemotherapy

- Procarbazine, Lomustine (CCNU), and Vincristine (PCV): NCCN Category 1
 - Schedule:
 - PCV is given as adjuvant treatment alone

Chemotherapeutic Agent	Route of Administration	Side Effects
Procarbazine	Oral	Nausea and Skin Reactions
Lomustine	Oral	Marrow Suppression
Vincristine	Intravenous	Neurotoxicity

Temozolomide (TMZ):

- Schedules:
 - TMZ can be given as adjuvant treatment alone
 - It can also be given concurrently with radiation and adjuvantly
- It is administered orally
- Side Effects:
 - Thrombocytopenia, development of a rash, diarrhea/constipation, nausea, mouth sores, edema, and hair thinning

Radiation

Simulation

- CT head non-contrast
- Brain MRI with and without contrast
- Face mask

Volumes

- GTV = surgical bed + any T2 abnormality (include enhancement on the T1c MRI)
- CTV = standard expansion is 1-2 cm, cropped from natural barriers
- **PTV** = 3 5 mm

Doses

- There are a variety of dosing schedules based on EORTC and RTOG trials
 - 45 Gy / 25 fx
 - 50.4 Gy / 28 fx
 - 54 Gy / 30 fx

Most centers utilize a single volume; some prefer an SIB

eContour

Selected CNS Dose Constraints

Organ at Risk (OAR)	Dose Constraint (Gy)
Optic Nerves and Chiasm	Max < 54 – 60
Brainstem	Max < 54 - 60
Cochlea	Mean < 45
Pituitary	Mean < 45
Hippocampus	Max < 16, D _{100%} < 9

PMID: 25701297

Radiation Toxicities

- Acute:
 - Fatigue
 - Alopecia
 - Nausea
 - Skin erythema
- Chronic:
 - Swelling
 - Radionecrosis
 - Location-Dependent: for example, if tumor is near the cochlea, radiation can possibly lead to sensorineural hearing loss (see dose constraints on previous slide)

Modern radiation techniques (i.e., IMRT, VMAT, and protons) are often utilized to minimize toxicities

Prognosis

At progression, nearly 70% of tumors undergo malignant transformation

- Most LGGs have a prolonged natural history
 - However, some can progress and malignantly transform
 - The rate of malignant transformation is unaffected by receipt of radiation
- Per historical data, the median overall survival range is 10 15 years
 - Given that these studies did not incorporate modern molecular classifications, the median survival of patients with LGGs (particularly those with 1p/19q-codeleted tumors) may be around 20 years

This sequence differs
from the one best used
to visualize GBMs

Review #1: The Correct MRI

What of the following MRI sequences allows for the best visualization of most low-grade gliomas?

- (A) T1
- (B) T1 + Contrast
- (C) T2

Think NCCN/RTOG risk factors!

Review #2: Risk Stratification

Which patient with a WHO grade 2 astrocytoma would radiation followed by adjuvant chemotherapy most strongly be recommended?

- (A) 50-year-old with subtotal resection
- (B) 4-year-old with subtotal resection
- (C) 23-year-old with gross total resection
- (D) 37-year-old with gross total resection

There is an OS benefit to this regimen (PMID: 27050206)

Review #3: Systemic Therapy

Which chemotherapy regimen is an NCCN Category 1 recommendation for patients with low-grade gliomas?

- (A) Procarbazine, Irinotecan, and Carboplatin
- (B) Procarbazine, Lomustine, and Vincristine
- (C) Concurrent Temozolomide
- (D) Concurrent and Adjuvant Temozolomide

Review #4: Radiation Dosing

Which of the following doses is appropriate for adjuvant treatment following a subtotal resection of a WHO grade 2 oligodendroglioma?

- (A) 30.6 Gy
- (B) 50.4 Gy
- (C) 59.4 Gy
- (D) 64.8 Gy

Dose escalation has not been shown to improve outcomes (PMID: 8948338)

Review #5: Dose Constraints

Which of the following is a reasonable dose constraint to the highlighted structure (red star)?

- (A) Mean < 45 Gy
- (B) Max < 54 Gy
- (C) $V_{20} < 37\%$
- (D) Max < 70 Gy

Answer Key

- 1. C
- 2. A
- 3. B
- 4. B
- 5. B

NRG-BN005 is comparing cognitive preservation for gliomas treated with protons vs. photons