Liquidity in the Foreign Exchange Market: Measurement, Commonality, and Risk Premiums

Loriano Mancini
Swiss Finance Institute and EPFL

Angelo Ranaldo
University of St. Gallen

Jan Wrampelmeyer
University of St. Gallen

Motivation

- **Liquidity**
 - key concept (LTCM, Subprime crisis, etc.)
 - relevant for investors, central bankers, regulators, etc.
- Liquidity in equity and bond markets studied extensively
- Only very few studies on FX liquidity (paucity of data)
- Liquidity in FX market important
 - Currency traders averse to liquidity shocks
 - Liquidity spirals aggravate currency crashes
 - International diversification through FX positions typically unhedged (only about 30% of FX risk is hedged)
 - etc.
Outline

FX market

Measures of liquidity

Liquidity of individual FX rates

Commonality in liquidity

Liquidity risk premium
Foreign Exchange market

- Large market:
 - average daily turnover 4 trillion USD (BIS 2010)
 - > 10-time daily turnover global equity markets (WFE 2009)
- Large variety ofFX traders world-wide:
central bankers, institutional traders, fund managers, daily traders, etc., algorithmic
- Open 24 hours a day
- FX spot market fragmented structure with several trading venues: dealer, broker, mixed dealer-broker, over-the-counter, internet, etc.
- Two leading trading platforms:
 Electronic Broking Services (EBS) and Reuters
Electronic Broking Services (EBS)

- Electronic limit order book
- Market share $\geq 60\%$
 ⇒ global market place for spot FX interdealer trading
- Primary trading venue for EUR/USD, USD/JPY, EUR/JPY, USD/CHF, EUR/CHF
- Dealers pre-screened for credit
 ⇒ counterparty risk not a concern
- All EBS quotes are transactable
 ⇒ reliably represent prevalent FX rates
- First platform to facilitate algorithmic trading in spot FX
Our EBS database

▶ Access via Swiss National Bank
▶ Tick-by-tick trades, quotes, volume indicators, signs
 ⇒ exact calculation of price impact and liquidity measures
▶ ≈ 90’000 observations each, per currency per day
▶ Sample period: from 1/2007 to 12/2009
▶ 9 FX rates: AUD/USD, EUR/CHF, EUR/GBP, EUR/JPY, EUR/USD, GBP/USD, USD/CAD, USD/CHF, USD/JPY
How EBS screen looks like

EBS

FX market
Outline

FX market

Measures of liquidity

Liquidity of individual FX rates

Commonality in liquidity

Liquidity risk premium
Measures of liquidity

Liquidity has many aspects ⇒ various measures

Estimated *daily*, using *intraday* data:

1. Price impact
2. Return reversal
3. Bid-ask spread
4. Effective cost
5. Price dispersion (volatility)
6. Latent liquidity (Principal Component Analysis)
Price impact and return reversal

- **Intuition:** if currency is illiquid, net buying pressure leads
 - Excessive appreciation of the currency
 - Followed by a reversal to the fundamental value

- **Model:**
 - Regression of one-minute returns on contemporaneous and lagged imbalance order flows:

 \[
 p_t - p_{t-1} = \theta + \varphi(v_{b,t} - v_{s,t}) + \gamma(v_{b,t-1} - v_{s,t-1}) + \varepsilon_t
 \]

 - \(\varphi\) **price impact**
 - ↑ asymmetric information \(\Rightarrow\) ↑ illiquidity
 - \(\gamma\) **return reversal**
 - market maker’s inventory risk and transaction costs

- Compute benchmark liquidity measures: no need of proxies
 e.g. Amihud (2002), Pastor and Stambaugh (2003)
Trading costs and price dispersion

- **Proportional bid-ask spread** $= \frac{(P^A - P^B)}{P^M}$
 cost aspect of illiquidity

- **Effective cost** $= \begin{cases} \frac{(P - P^M)}{P^M}, & \text{for buyer-initiated trades} \\ \frac{(P^M - P)}{P^M}, & \text{for seller-initiated trades} \end{cases}$
 account for inter-quote trading

- **Price dispersion** $= \text{volatility (TSRV)}$
 \uparrow volatility \Rightarrow MM requires more compensation for risk

A Ask, B Bid, M Mid quote, P transaction price
Outline

FX market

Measures of liquidity

Liquidity of individual FX rates

Commonality in liquidity

Liquidity risk premium
Summary statistics show that

- EUR/USD, USD/JPY traded most frequently
- AUD/USD, USD/CAD traded least frequently
- Average price impact φ positive
- Average return reversal γ negative
- EUR/USD most liquid
- GBP/USD rather illiquid (mostly traded on Reuters)
- EUR/CHF, USD/CHF highly liquid (flight-to-quality, CHF safe haven; Ranaldo and Söderlind 2010)
- AUD, GBP depreciated, EUR, CHF, JPY appreciated vs. USD
Effective cost

Most liquid (up) and least liquid (bottom) FX rates.

Effective cost = \[
\begin{cases}
(P - P^M)/P^M, & \text{for buyer-initiated trades} \\
(P^M - P)/P^M, & \text{for seller-initiated trades}
\end{cases}
\]

Sign adjusted to measure liquidity. Daily base.
Cost of illiquidity: carry trade example

- U.S. investor engages in AUD-JPY carry trade:
 - borrow at low interest rate (1%) in Japan
 - invest at high interest rate (8%) in Australia
- Carry trade initiated:
 - selling JPY vs. USD
 - buying AUD vs. USD
- Unwind carry trade under two liquidity scenarios:
 - High liquidity, i.e. small bid-ask spreads:
 - 2.64bps AUD/USD, 0.90bps USD/JPY
 - cost due to illiquidity = 0.5% of profit
 - Low liquidity, i.e. large bid-ask spreads:
 - 54.03bps AUD/USD (as in 10/2008)
 - cost due to illiquidity = 10.7% of profit!
- Additional costs when FX liquidity low: usually
 - Funding currency (JPY) appreciates,
 - Investment currency (AUD) depreciates
 - Low liquidity in fixed income market too
Carry trade AUD-JPY

Cumulative AUD/USD carry trade return

Cumulative JPY/USD carry trade return

Liquidity of individual FX rates
Outline

FX market

Measures of liquidity

Liquidity of individual FX rates

Commonality in liquidity

Liquidity risk premium
Commonality in liquidity

Commonality means FX liquidity is driven by shocks that affect the entire FX market rather than individual FX rates

- Is there any commonality in liquidity across FX rates?
- Consistent with liquidity spirals (Brunnermeier and Pedersen 2009)
- Unexpected shocks to market-wide liquidity affect investors, regulators, etc.
- Commonality necessary for liquidity risk premium
Market-wide liquidity

Two approaches:

1. Cross-sectional average of FX rate liquidities, $L_{j,t}$:

 $$L^M_t = \frac{1}{N} \sum_{j=1}^{N} L_{j,t}$$

 (e.g. Chordia, Roll and Subrahmanyam 2000)

2. Principal Component Analysis (PCA)
 (e.g. Korajczyk and Sadka 2008)
Latent liquidity within measure

Commonality within a liquidity measure:

- Consider one liquidity measure (e.g. effective cost), $L_{j,t}$
- **Cross-sectional** PCA, i.e. across FX rate liquidities
 \{L_{j,t}, j = 1, \ldots, N\}
 \Rightarrow \text{Latent common factors } L_t^{(1)}, L_t^{(2)}, \ldots
- **Time series** regression for each FX rate liquidity $L_{j,t}$:
 - Regression 1: $L_{j,t} = \theta_0 + \theta_1 L_t^{(1)} + \varepsilon_{j,t}$
 - Regression 2: $L_{j,t} = \theta_0 + \theta_1 L_t^{(1)} + \theta_2 L_t^{(2)} + \varepsilon_{j,t}$
 - etc.
- Repeat above procedure for each liquidity measure
Evidence for commonality in liquidity

<table>
<thead>
<tr>
<th>Measure</th>
<th>Factors</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1,2</td>
<td>1,2,3</td>
<td></td>
</tr>
<tr>
<td>Return reversal ($K = 1$)</td>
<td>0.28</td>
<td>0.41</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Return reversal ($K = 3$)</td>
<td>0.32</td>
<td>0.44</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Return reversal ($K = 5$)</td>
<td>0.32</td>
<td>0.44</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>Price impact</td>
<td>0.63</td>
<td>0.74</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Bid-ask spread</td>
<td>0.72</td>
<td>0.80</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Effective cost</td>
<td>0.89</td>
<td>0.93</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>volume-weighted</td>
<td>0.90</td>
<td>0.94</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Price dispersion (TSRV, 1 min.)</td>
<td>0.80</td>
<td>0.86</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>Price dispersion (TSRV, 5 min.)</td>
<td>0.81</td>
<td>0.86</td>
<td>0.90</td>
<td></td>
</tr>
</tbody>
</table>

Table: Average (across FX rates) adjusted-R^2. Daily base.

Similar results when only including FX rates vs. USD

\Rightarrow commonality not induced by triangular relationships.
Liquidity sensitivity

- **Individual** FX rate liquidity, $L_{j,t}^{(ec)}$:
 Effective cost for FX rate j

- **Market-wide** liquidity measure, $L_{M,t}^{(ec)}$:
 Average across FX rates of effective costs, excluding FX rate j

- **Idiosyncratic** liquidity, $L_{j,t}^{(i)}$:

 $$L_{j,t}^{(ec)} = a_j + b_j L_{M,t}^{(ec)} + L_{j,t}^{(i)}$$

 i.e. residual
Liquidity sensitivity: Estimates

<table>
<thead>
<tr>
<th></th>
<th>AUD/USD</th>
<th>EUR/CHF</th>
<th>EUR/GBP</th>
<th>EUR/JPY</th>
<th>EUR/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_j)</td>
<td>3.15</td>
<td>0.35</td>
<td>1.09</td>
<td>0.56</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.005)</td>
<td>(0.023)</td>
<td>(0.007)</td>
<td>(0.003)</td>
</tr>
</tbody>
</table>

\[R^2 = 0.76 \quad 0.85 \quad 0.76 \quad 0.90 \quad 0.81 \]

Table: Sensitivity to market-wide liquidity, \(b_j \), from regression:
\[L_{j,t}^{(ec)} = a_j + b_j L_{M,t}^{(ec)} + L_{j,t}^{(i)} \]
Robust standard errors in parentheses.
Market-wide liquidity across measures

- All liquidity measures proxy **liquidity**
- Correlations up to 0.8 for weekly liquidity measures
- To extract all common information
 ⇒ PCA across liquidity measures *and* across FX rates
 (Korajczyk and Sadka 2008)
Interpretation of market-wide liquidity

<table>
<thead>
<tr>
<th></th>
<th>AUD/USD</th>
<th>EUR/CHF</th>
<th>EUR/GBP</th>
<th>EUR/JPY</th>
<th>EUR/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Principal Component loadings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return reversal</td>
<td>0.31</td>
<td>0.32</td>
<td>0.23</td>
<td>0.36</td>
<td>0.31</td>
</tr>
<tr>
<td>Price impact</td>
<td>0.42</td>
<td>0.46</td>
<td>0.42</td>
<td>0.46</td>
<td>0.47</td>
</tr>
<tr>
<td>Bid-ask spread</td>
<td>0.47</td>
<td>0.48</td>
<td>0.46</td>
<td>0.46</td>
<td>0.48</td>
</tr>
<tr>
<td>Effective cost</td>
<td>0.50</td>
<td>0.48</td>
<td>0.54</td>
<td>0.48</td>
<td>0.47</td>
</tr>
<tr>
<td>Price dispersion</td>
<td>0.49</td>
<td>0.45</td>
<td>0.51</td>
<td>0.45</td>
<td>0.46</td>
</tr>
<tr>
<td>cum. explained</td>
<td>72%</td>
<td>77%</td>
<td>59%</td>
<td>80%</td>
<td>80%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AUD/USD</th>
<th>EUR/CHF</th>
<th>EUR/GBP</th>
<th>EUR/JPY</th>
<th>EUR/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Principal Component loadings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return reversal</td>
<td>0.92</td>
<td>0.93</td>
<td>0.94</td>
<td>0.92</td>
<td>0.94</td>
</tr>
<tr>
<td>Price impact</td>
<td>−0.34</td>
<td>−0.02</td>
<td>0.09</td>
<td>−0.18</td>
<td>−0.13</td>
</tr>
<tr>
<td>Bid-ask spread</td>
<td>−0.09</td>
<td>−0.15</td>
<td>−0.23</td>
<td>−0.09</td>
<td>−0.16</td>
</tr>
<tr>
<td>Effective cost</td>
<td>−0.13</td>
<td>−0.18</td>
<td>−0.15</td>
<td>−0.15</td>
<td>−0.20</td>
</tr>
<tr>
<td>Price dispersion</td>
<td>−0.06</td>
<td>−0.26</td>
<td>−0.13</td>
<td>−0.29</td>
<td>−0.13</td>
</tr>
<tr>
<td>cum. explained</td>
<td>87%</td>
<td>91%</td>
<td>77%</td>
<td>91%</td>
<td>94%</td>
</tr>
</tbody>
</table>
Liquidity: global phenomenon?

VIX = SPX implied volatility index, “fear index”
TED-spread = Interbank loans − T-bill
proxy for credit-risk and funding liquidity

Sign adjusted to measure liquidity. Daily base.
Correlation: FX liquidity-VIX −0.8; FX liquidity-TED −0.5
Evidence for liquidity spirals

Link between traders’ funding liquidity and market-wide FX liquidity.

\[L_{FX,t}^{pca} = \text{const} + \beta_{VIX} VIX_{t-1} + \beta_{TED} TED_{t-1} + \text{error}_t \]

<table>
<thead>
<tr>
<th></th>
<th>const</th>
<th>VIX_{t-1}</th>
<th>TED_{t-1}</th>
<th>Adj. R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeff.</td>
<td>18.94</td>
<td>-0.69</td>
<td>-1.26</td>
<td>0.76</td>
</tr>
<tr>
<td>Std. err.</td>
<td>(0.98)</td>
<td>(0.04)</td>
<td>(0.44)</td>
<td></td>
</tr>
</tbody>
</table>

When \(VIX_{t-1} \uparrow 1\sigma_{VIX} \Rightarrow L_{FX,t}^{pca} \downarrow 0.8\sigma_{FX} \)
Outline

FX market

Measures of liquidity

Liquidity of individual FX rates

Commonality in liquidity

Liquidity risk premium
Documented commonality in liquidity:

- Is liquidity risk priced in FX market?
- Investors are averse to shocks in market-wide liquidity
 E.g. Currency crashes
 (Brunnermeier, Nagel and Pedersen 2009)
 ⇒ FX liquidity risk priced
- Have shocks to market-wide liquidity a persistent impact?
Autocorrelation systematic liquidity

Price impact

Return reversal

Bid-ask spread

Effective cost

Price dispersion

Latent liquidity (PCA)
Carry trade returns

- Daily carry trade returns
 \[r_{j,t+1}^e = i_t^f - i_t^d - \Delta p_{j,t+1} \]

- Base currency: USD

- USD appreciated > 15% vs. major currencies in 2 and 1/2 months after Lehman bankruptcy!
Risk factors for FX returns

- Liquidity risk factor, *IML*: return of portfolio long two FX rates most illiquid and short two FX rates most liquid
- Market risk factor, *AER*: Average Excess Return for U.S. investor
Carry trade and liquidity risk

Asset pricing model:

\[r_{j,t}^e = \alpha_j + \beta_{IML,j} IML_t + \beta_{AER,j} AER_t + error_{j,t} \]

<table>
<thead>
<tr>
<th></th>
<th>JPY</th>
<th>CHF</th>
<th>EUR</th>
<th>CAD</th>
<th>AUD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>0.018</td>
<td>0.018</td>
<td>0.001</td>
<td>0.006</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.013)</td>
<td>(0.008)</td>
<td>(0.017)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>(\beta_{AER})</td>
<td>0.608</td>
<td>1.137</td>
<td>1.093</td>
<td>0.651</td>
<td>1.050</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.021)</td>
<td>(0.014)</td>
<td>(0.029)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>(\beta_{IML})</td>
<td>−0.382</td>
<td>−0.200</td>
<td>−0.091</td>
<td>0.197</td>
<td>0.330</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.007)</td>
<td>(0.005)</td>
<td>(0.010)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.730</td>
<td>0.803</td>
<td>0.903</td>
<td>0.714</td>
<td>0.892</td>
</tr>
</tbody>
</table>

Liquidity betas and interest rate differentials

![Graph showing liquidity betas and interest rate differentials.](image)

- AUD
- CAD
- DKK
- EUR
- SEK
- NZD
- JPY
- CHF
- GBP

Liquidity risk premium
Main message

- High interest rate currencies (e.g., AUD, NZD):
 - low liquidity
 - high liquidity sensitivity
 - large positive liquidity beta, $\beta_{IML} > 0 \Rightarrow$
 - exposure to liquidity risk
 - compensation for poor liquidity

- Low interest rate currencies (e.g., JPY, CHF):
 - high liquidity
 - low liquidity sensitivity
 - large negative liquidity beta, $\beta_{IML} < 0 \Rightarrow$
 - insurance against liquidity risk
 - “insurance premium” to pay for high liquidity
Carry trade return and liquidity

Cumulative AUD/USD carry trade return

Cumulative JPY/USD carry trade return

Market-wide FX liquidity (PCA)
Conclusion

- Liquidities of individual FX rates:
 - large temporal and cross sectional variation
 - respond differently to shocks in market-wide liquidity
 - drop quickly after Lehman bankruptcy
 - recover slowly during 2009

- Strong commonality in liquidity across FX rates:
 When central bank injects liquidity in its own currency
 - Spill over effects to other currencies
 - High interest rate currencies react more
 (may boost speculation)

- Liquidity risk “priced” in FX market:
 - High interest rate currencies expose to liquidity risk
 - Low interest rate currencies insure against liquidity risk
 - Liquidity spirals trigger the mechanism