STOKING THE CREATIVE FIRE

Sean Saunders, M.Sc.
Sheridan College
OUTRAGEOUS CLAIM #1:

• THEOREM (FORMAL): For every continuous map \(f: S^n \to \mathbb{R}^n \), where \(S^n \) is the boundary of \(B^{n+1} \), \(\exists x \in S^n \) such that \(f(x) = f(-x) \)

• THEOREM (FUN): At any moment, there are two antipodes on Earth with the exact same temp & atmospheric pressure

Reference: (2) Arora, S. (2002); Figure: (1) Topology Earth
BORSUK-ULAM THEOREM

- Choose two antipodes
 - If they have the same temp, you’re done
 - Else, we can create a continuous antipodal path/loop from one antipode to the other
- At some point on this loop, they have the same temperature

Reference: (3) Stevens, 2016 [YouTube Video]; Figure: (2) Borsuk Ulam World
The antipodal points of equal temperature form an antipodal path/loop themselves.
- Select two antipodal points on this loop.
- If they have the same pressure, we’re done.
- Else, repeat the same process as with temp.

Reference: (4) Stevens, 2016 [YouTube Video]; Figure: (7) Borsuk Ulam World
OUTRAGEOUS CLAIM #2:

• Every continuous endomorphism on a convex, compact metric space has a fixed point

 OR

• No matter how much you stir a cup of iced tea, some point will always return to its initial position

Figure: (3) Just Stirring GIF
SPERNER’S LEMMA

TRIANGLE TRI-COLOURING

• Draw a “triangulation”
• Colour the corner vertices 3 different colours
• Colour the edge nodes either of the colours of the vertices they connect
• Colour the interior nodes any of the 3 colours
• LEMMA: There is an odd number of “3-coloured” triangles

Reference: (4) Fox, 2009, p. 1-2; Figure: (4) Sperner’s 2-D Simplex
BROUWER’S FIXED POINT

• Given \(f : B^n \rightarrow B^n \) (\(n \)-dim ball)
 • Embed in \(\mathbb{R}^{n+1} \) on hyperplane \(\sum_{i=1}^{n+1} x_i = 1 \)
 • Let \(\Delta^n \) be an \(n \)-dim simplex (i.e. triangle)
 • Transform \(B^n \) to \(\Delta^n \) by homeomorphism

• Use Sperner’s Lemma (SL) & Bolzano-Weierstrass Theorem (BW)
 • Colour \(x \) with \(i \in [n + 1] \) if and only if \(i \) is the minimal value such that \(f(x_i) < x_i \)

Reference: (4) Fox, 2009, p. 2-3
BROUWER’S FIXED POINT

- Subdivide (subtriangulate) Δ^n into smaller simplices $\Delta^n_j, j = 0, 1, 2, 3, \ldots$
 - $j = \text{number of subdivisions in } \Delta^n_j$
- $\text{SL } \rightarrow \forall \Delta^n_j \exists [n + 1]$-coloured sub-simplex
- $\text{BW } \rightarrow \forall i \in [n + 1] \exists \text{ conv subsequence}$
- As j increases, Δ^n_j decrease in size
- Limit point $x : f(x_i) \leq x_i \ \forall i \in [n + 1]$
- $\sum_{i=1}^{n+1} f(x_i) = 1 \rightarrow f(x_i) = x_i \ \forall i \in [n + 1]$

Reference: (4) Fox, 2009, p. 2-3
WHERE DO WE GO FROM HERE?

• Find and share your passion
 • We are inspired by passion
 • Doesn’t need to be practical
 • Your excitement is contagious

• Use story-telling and narrative
 • Facts don’t engage like stories do!

• Spark curiosity and ignite passion
 • “Always leave them wanting more”
OUTRAGEOUS CLAIM #3:

Figures: (5) Ham Sandwich, (6) Ham Sandwich Theorem
HAM SANDWICH THEOREM

• Let the ham, cheese and bread be 3D chunks represented by A_1, A_2, and A_3

• Given point p on the sphere S^2, let P_i be a plane tangent to p bisecting chunk A_i

• Let $(d_1, d_2) = \text{dist}_p(P_3 - P_1, P_3 - P_2)$
 • $f: S^2 \to \mathbb{R}^2, f(p) = (d_1, d_2)$ is continuous

• By Borsuk-Ulam, $\exists p: f(p) = f(-p)$
 • i.e. $(d_1, d_2) = (-d_1, -d_2) = (0,0)$
 • $\therefore P = P_1 = P_2 = P_3$ cuts all 3 chunks in half

Reference: (5) Dougherty, 2017; (6) SeriousMathsAndUnicorns, 2015 [Blog]
AND WITH THAT...

... It’s Time For Lunch!

(THE END)
FOR MORE INFORMATION

Presenter:
• Sean Saunders
• Sheridan College

Email:
• sean.saunders@sheridancollege.ca
REFERENCES

FIGURES

3) Just Stirring GIF: https://tenor.com/view/just-stirring-my-tea-gif-5672805

4) Sperner’s 2-D Simplex: https://www.lesswrong.com/posts/svE3S6NKdPYoGepzq/topological-fixed-point-exercises

5) Ham Sandwich: https://farm5.static.flickr.com/4090/4970848133_dd41214ec6.jpg

6) Ham Sandwich Theorem: https://curiosamathematica.tumblr.com/image/53344367846