STANDARDS FOR INTELLECTUAL DEVELOPMENT

At the conclusion of the first two years of their college studies, all students should have progressed in their development of certain intellectual abilities and of other competencies and knowledge. Introductory college courses across disciplines should be designed to broaden an existing educational foundation and allow students to appreciate mathematics, statistics, and data science as powerful reasoning and general problem-solving tools. AMATYC’s Standards for Intellectual Development include the areas of problem solving, modeling, reasoning, connecting with other disciplines, communicating, using technology, developing mathematical prowess, and linking multiple representations.

Standard I-1: Problem Solving

Students will engage in relevant, authentic problem solving and mathematical and statistical thinking.

Students will use problem-solving strategies that require persistence, analysis of assumptions, intellectual risk taking and application of appropriate procedures. These strategies should include posing questions; organizing information; constructing visual representations; solving similar, simpler problems; analyzing situations through trial and error, graphing, and modeling; and drawing conclusions by translating, illustrating, and verifying results. The students should be able to communicate and interpret their results.

Emphasizing problem solving will make mathematics more meaningful to students. The problems used should be relevant to the needs and interests of the students in the class. Such problems provide a context as well as a purpose for learning new skills, concepts, and theories.

Standard I-2: Modeling

Students will learn mathematics and statistics through modeling real-world situations.

Students will participate in the mathematical and statistical modeling of situations from the world around them and use the models to make predictions and informed decisions. Swetz (1991) describes the mathematical modeling process as "(1) identifying the problem, including the conditions and constraints under which it exists; (2) interpreting the problem mathematically; (3) employing the theories and
tools of mathematics to obtain a solution to the problem; (4) testing and interpreting the solution in the context of the problem; and (5) refining the solution techniques to obtain a 'better' answer to the problem under consideration, if necessary" (pp. 358-359). The statistical modeling process is similar but also involves connecting data, chance, and context (Pfannkuch, et.al, 2018). Whether students develop their own models or evaluate models that are given to them, they should look beyond how well a proposed model fits a set of data and attempt to provide contextual, mathematical, statistical, or data-based reasons for why the model is valid.

Standard I-3: Reasoning

Students will expand their mathematical and statistical reasoning skills as they develop convincing mathematical, statistical, and data-based arguments.

Students will regularly apply inductive and deductive reasoning techniques to build convincing mathematical, statistical, and/or data-based arguments. They will develop conjectures based on previous knowledge, data, and intuition and test these conjectures by using logic and deductive and inductive proof, by framing examples and counterexamples, and by probabilistic and statistical reasoning. They will then draw appropriate conclusions and communicate their argument convincingly. In addition, students will judge the validity of mathematical, statistical, and/or data-based arguments using the same reasoning skills.

Standard I-4: Connecting with Other Disciplines

Students will develop the view that mathematics, statistics, and data science are growing disciplines, are interrelated with human culture, and understand their connections to other disciplines.

If students are to gain a sense that mathematics, statistics, and data science are growing disciplines, course content must include current and relatable topics such as algorithms needed for computer-based solution processes, the use of probability in understanding chance and randomization, modern approaches to statistical inference and data visualization, and the applications of non-Euclidean geometries. These topics lend themselves to discussions of who developed the ideas, when they were developed, and what kind of human endeavors motivated their development, which reinforces recognition of math in all parts of life and cultures. Students should develop an appreciation of how mathematics and statistics provide a language for the sciences; play a role in art, music, and literature; are applied by social scientists and practitioners in health care fields; are used in business and manufacturing; and have impacted history.
Standard I-5: Communicating

Students will develop the ability to read, write, listen to, and speak the languages of mathematics, statistics, and data science.

Students will develop the skills necessary to communicate ideas and procedures, and results using appropriate mathematical and statistical vocabulary and notation. Students will develop the ability to communicate the results of analyses through appropriate models and visualizations. Furthermore, mathematics, statistics, and data science faculty will adopt instructional strategies that develop both oral and written communication skills within a context of authentic applications relevant to a diverse student population. As students learn to speak and write about mathematics, statistics, and data science, they develop acumen and become better prepared to use this knowledge and these skills beyond the classroom.

Standard I-6: Using Technology

Students will use appropriate technology to enhance their thinking and conceptual understanding and to solve problems.

Students will develop an ability to use technology to enhance their study of mathematics, statistics, and data science. Current technology can be used to aid in the understanding, exploration, and visualization of concepts and the analysis of data. Students can use technology to test conjectures, explore ideas, and verify that theorems are true in specific instances. They should also embrace technology as a tool to aid in the solution of authentic problems and to validate those solutions. Students should be able to judge the reasonableness and accuracy of the results generated by technology.

Standard I-7: Developing Mathematical Prowess

Students will engage in rich experiences in the study of mathematics, statistics, data science, and related fields that encourage independent, nontrivial exploration and will develop and reinforce tenacity and confidence in their abilities and inspire them to further their studies in these fields.

Students will develop self-confidence and persistence while engaging with mathematics, statistics, and data science problem-solving. These problems will not always have unique solutions but will provide experiences that develop the ability to conduct independent explorations. At the same time, they will learn to transfer
problem-solving strategies to a variety of contexts (Druckman & Bjork, 1994) and appreciate mathematics, statistics, and data science as disciplines. They will visualize themselves using mathematics and statistics effectively in their professional work and everyday lives. They will develop an awareness of careers in mathematics and related disciplines.

Standard I-8: Linking Multiple Representations

Students will select, use, and translate among mathematical and statistical representations—numerical, graphical, symbolic, and verbal—to organize information and solve problems using a variety of techniques.

Students will explore complex problems, using multiple approaches, and explain their solutions in both oral and written form. Students will be motivated to go beyond the mastery of basic operations, statistical algorithms, or algebraic manipulations to a real understanding of how to use mathematics and statistics, the meaning of the answers, and how to interpret them.

1Beyond Crossroads: Chapter 7 Instruction

https://my.amatyc.org/impactlive-home/standards-docs/beyond-chapt07
References

