Engaging Students in True Problem Solving

Kuo-Liang Chang and Hazel McKenna, Utah Valley University

Teaching standard algorithms to solve corresponding types of problems is common practice in the mathematics classroom. True problem solving, where there are no standard algorithms or problem types to match, rarely exists in mathematics classrooms. However, active learning with true problem solving embedded has been gradually accepted and adopted in college mathematics courses over the past two decades. In this article, we explore the essential skills required for true problem solving, and how these essential skills are distorted to memorization of standard algorithms and problem types in the classroom. In addition, we compare the thinking habits commonly taught in the classroom with those required for true problem solving. Finally, we propose a construct to embed true problem-solving essentials into everyday classroom teaching practice.

Keywords: problem solving, active learning

Kuo-Liang (Leo) Chang received his master’s degree in applied mathematics, and PhD degree in curriculum, instruction, and teacher education with concentration on mathematics from Michigan State University. His research interests center on mathematical thinking and reasoning, problem solving, and the foundation of mathematics.

Hazel J. McKenna earned a PhD in instructional science with an emphasis in educational measurement and evaluation, and minors in mathematics and statistics. She also holds an MS and a BSc in mathematics. She is a professor in developmental mathematics at Utah Valley University. Her research interests include the teaching and learning of mathematics, with a particular interest in mathematics for social justice.