Solving Equations Containing Rational Expressions -
Section 7.3 – 7.4 in MATH 101

Class Strategy:

Discovery Learning Activity: Students do Activity 5.4 (Blood – Alcohol Levels) –
Mathematics in Action – Algebraic, Graphic, & Trigonometric Problems Solving –
Second Edition - The Consortium For Foundation Mathematics

In 1992, the U.S. Department of Transportation recommended that states adopt 0.08% blood – alcohol concentration as the legal measure of drunk driving. If you assume that a regular 12-ounce beer is 5% alcohol by volume and that the normal bloodstream contains 5 liters (or 169 ounces) of fluid, your maximum blood – alcohol concentration, \(B \), can be approximately modeled by the function having the equation

\[
B = \frac{600n}{w(169 + 0.6n)}
\]

where \(n \) is the number of beers consumed in one hour and \(w \) is your body weight in pounds.

1.a. Replace \(w \) with your body weight. Write an equation for \(B \) in terms of \(n \).

b. Complete the following table using your equation from part a.

<table>
<thead>
<tr>
<th>Number of Beers, (n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood – Alcohol Concentration, (B)</td>
<td></td>
</tr>
</tbody>
</table>

2. According to this model, how many beers can you consume in one hour without exceeding the recommended legal measure of drunk driving?
3.a. A football player friend of yours weighs 232 pounds. Rewrite the equation for B in terms of n. What is his maximum blood-alcohol level if he drinks four beers in one hour?

b. Complete the following table using your equation in part a.

<table>
<thead>
<tr>
<th>Number of Beers, n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood – Alcohol Concentration, B</td>
<td></td>
</tr>
</tbody>
</table>

4.a. Your 232-pound football player friend is given a breathalyzer test. The result is a blood-alcohol concentration of 0.05%. Using the blood-alcohol concentration function, write an equation that can be solved to determine the number of beers your friend consumed in the previous hour.
Instructor Led Discussion:

Example 1:

Method 1: Solve \(\frac{16}{x+3} = 2 \), by multiplying both sides by the LCD

\[
\frac{16}{x+3} = 2
\]

\[
(x+3) \cdot \frac{16}{x+3} = 2(x+3)
\]

16 = 2x + 6
10 = 2x
5 = x

check: \(\frac{16}{5+3} = \frac{16}{8} = 2 \)

Method 2: Solve \(\frac{16}{x+3} = 2 \), by cross multiplying

\[
\frac{16}{x+3} = \frac{2}{1}
\]

2(x+3) = 16 \cdot 1
2x + 6 = 16
2x = 10
x = 5

Student Practice:

5.a. \(\frac{45}{x} = 9 \)
b. \(\frac{23}{x+2} = 15 \)
c. \[\frac{13}{x} = \frac{2}{5} \]

6.a. Solve the equation in problem 4a using an algebraic approach.
Continue with ILD:

1. Solve \(\frac{-2}{3x} + \frac{8}{3} = \frac{2}{x} \)

2. Solve \(\frac{2}{x+1} + \frac{1}{3x+3} = \frac{2}{3} \)

3. Solve \(\frac{2}{x} + 1 = \frac{3}{x^2} \)

4. Solve \(\frac{8}{x+2} = 1 + \frac{2}{x} \)
Solving Equations Containing Rational Expressions

1. Multiple both sides of the equation by the _____________________

2. Distribute; that is, multiply every term of the equation by the _________________

3. Multiply by canceling common _______________________

4. Solve the resulting equation (it should have no fraction) ____________________

Example 1: \[\frac{5}{3} - \frac{2}{3x} = \frac{6}{x} \]

Example 2: \[\frac{3}{5} - \frac{1}{x-1} = \frac{7}{5x-5} \]

Example 3: \[\frac{x^2}{x+100} = 50 \]