Shane Tang
Shane.Tang@slcc.edu

Medical Math vs Intermediate Algebra

AMATYC Section Identification Code: S061

October 31, 2013
The scariest day of the year!
Pre-nursing students can improve their mathematical skills by taking a medical math class that is designed for such a purpose. The presentation covers curriculum, syllabus, grading standards, and pedagogy so that future nurses are able to solve and check dosages and other related mathematical problems accurately and efficiently.
Table of contents

History and Curriculum

Personal View

Medical Math vs Intermediately Algebra
 Memorizations
 Topics
 Accuracy
 Efficiency

Calculator Usage

Syllabus

Students’ Success

Current at SLCC
The brief history was from Professor Joe Gallegos. He could not come today.

Before year 2000, the prerequisite Math class for Nursing and Medical Assistant programs was Math 1030 Quantitative Reasoning.
The brief history was from Professor Joe Gallegos. He could not come today.

Before year 2000, the prerequisite Math class for Nursing and Medical Assistant programs was Math 1030 Quantitative Reasoning.

The course description:
MATH 1030 Quantitative Reasoning 3 cr
Prereq: RDG 0990; within the last year, MATH 1010 w/C grade or better, or appropriate Accuplacer score.
The course focuses on the development of analytical thinking through the application of math to real-life problems. Topics include modeling, logic, financial math, probability, statistics, and geometry.
The brief history was from Professor Joe Gallegos. He could not come today.

Before year 2000, the prerequisite Math class for Nursing and Medical Assistant programs was Math 1030 Quantitative Reasoning.

The course description:
MATH 1030 Quantitative Reasoning 3 cr
Prereq: RDG 0990; within the last year, MATH 1010 w/C grade or better, or appropriate Accuplacer score.
The course focuses on the development of analytical thinking through the application of math to real-life problems. Topics include modeling, logic, financial math, probability, statistics, and geometry.
Math 1010 Intermediate Algebra

The course description:
MATH 1010 Intermediate Algebra
Prereq: RDG 0900; within the last year, MATH 0990 w/C grade or better, or appropriate Accuplacer score.
Linear and quadratic equations; inequities; polynomials; rational expressions; radicals; negative and rational exponents; complex numbers; linear systems; introduction to functions; logarithms; and exponential functions.
Math 1010 Intermediate Algebra

The course description:
MATH 1010 Intermediate Algebra
Prereq: RDG 0900; within the last year, MATH 0990 w/C grade or better, or appropriate Accuplacer score.
Linear and quadratic equations; inequities; polynomials; rational expressions; radicals; negative and rational exponents; complex numbers; linear systems; introduction to functions; logarithms; and exponential functions.
Accreditation recommendation: Include more medical computations in the prerequisite.

Math 1020 course curriculum was developed.
Accreditation recommendation: Include more medical computations in the prerequisite.

Math 1020 course curriculum was developed.

The course description:
MATH 1020 Math - Health Disciplines 3 cr
Prereq: ...
A general review of mathematics; dimensional analysis; apothecary, household, and metric systems and conversions; drug dosage and intravenous fluid calculations; acid-base balance.
Accreditation recommendation: Include more medical computations in the prerequisite.

Math 1020 course curriculum was developed.

The course description:
MATH 1020 Math - Health Disciplines 3 cr
Prereq: ...
A general review of mathematics; dimensional analysis; apothecary, household, and metric systems and conversions; drug dosage and intravenous fluid calculations; acid-base balance.
Medical Assistant program and Professor Joe Gallegos’ research

Yearly meeting
Medical Assistant program and Professor Joe Gallegos’ research

Yearly meeting

Matthew 6:24 “No man can serve two masters: for either he will hate the one, and love the other; or else he will hold to the one, and despise the other.”
Medical Assistant program and Professor Joe Gallegos’ research

Yearly meeting

Matthew 6:24 “No man can serve two masters: for either he will hate the one, and love the other; or else he will hold to the one, and despise the other.”

Why me?
Medical Assistant program and Professor Joe Gallegos’ research

Yearly meeting

Matthew 6:24 “No man can serve two masters: for either he will hate the one, and love the other; or else he will hold to the one, and despise the other.”

Why me?
Socrates’ suggestion:

“When you desire my knowledge like you desired that breath of air, then you shall have it.”

http://www.klemmer.com/blog/lesson-2-the-desire-for-air/
Socrates’ suggestion:

“When you desire my knowledge like you desired that breath of air, then you shall have it.”

http://www.klemmer.com/blog/lesson-2-the-desire-for-air/

My suggestion:
Socrates’ suggestion:

“When you desire my knowledge like you desired that breath of air, then you shall have it.”

http://www.klemmer.com/blog/lesson-2-the-desire-for-air/

My suggestion:

When you don’t desire to kill your patients, take SLCC’s Medical Math class.
Socrates’ suggestion:

“When you desire my knowledge like you desired that breath of air, then you shall have it.”

http://www.klemmer.com/blog/lesson-2-the-desire-for-air/

My suggestion:

When you don’t desire to kill your patients, take SLCC’s Medical Math class.

2007...
Socrates’ suggestion:

“When you desire my knowledge like you desired that breath of air, then you shall have it.”

http://www.klemmer.com/blog/lesson-2-the-desire-for-air/

My suggestion:

When you don’t desire to kill your patients, take SLCC’s Medical Math class.

2007...
Memorizations: Medical Abbreviations

qam = every morning
q1h = every hour
q2h = every 2 hours
q4h = every 4 hours
p.c. = after meals
a.c. = before meals
qd = every day
qod = every other day
bid = two times a day
tid = three times a day
qid = four times a day
hs = hour of sleep
č = with
š = without
mEq = milliequivalent

prn = as needed
IM = intramuscular
IV = intravenous
SubQ = subcutaneous
SQ = subcutaneous
PO = by mouth
NPO = nothing by mouth
SL = sublingual
OD = right eye
OS = left eye
OU = both eyes
AD = right ear
AS = left ear
AU = both ears
Stat = immediately
Memorizations: Unit abbreviations

Time
yr = year
mon = month
wk = week
h = hour
min = minute
sec = second

Length
km = kilometer
m = meter
cm = centimeter
mm = millimeter
yd = yard
ft = feet
in = inch

Volume
L = liter
mL = milliliter
cc = cubic centimeter
gal = gallon
qt = quart
pt = pint
fl oz = fluid ounce
fl dr = fluid dram
tbsp or T = Tablespoon
tsp or t = teaspoon

Volume
gtt = drop
µgtt = microdrop
c = cup

Weight
kg = kilogram
g = gram
mg = milligram
mcg or µg = microgram
lb = pound
oz = ounce
dr = dram
gr = grain
Memorizations: Conversions

Time
- 1 yr \sim 365 days
- 1 yr = 12 mon
- 1 mon \sim 30 days
- 1 wk = 7 days
- 1 day = 24 h
- 1 h = 60 min
- 1 min = 60 sec

Length: Metric
- 1 km = 1,000 m
- 1 m = 100 cm
- 1 cm = 10 mm

Length: U. S.
- 1 yd = 3 ft
- 1 ft = 12 in

Between Systems
- 1 in \sim 2.54 cm

Weight: Metric
- 1 kg = 1,000 g
- 1 g = 1,000 mg
- 1 mg = 1,000 mcg

Weight: U. S.
- 1 lb = 16 oz
- 1 oz = 8 dr
- 1 dr = gr 60

Between Systems
- 1 kg \sim 2.2 lb
- 1 g \sim gr 15
- gr 1 \sim 60 mg
Memorizations: Conversions

Volume: Metric
- 1 L = 1,000 mL
- 1 mL = 1 cc

Volume: Household
- 1 cup = 16 T
- 1 T = 3 t

Volume: Apothecary
- 1 gal = 4 qt
- 1 qt = 2 pt
- 1 pt = 16 fl oz
- 1 fl oz = 8 fl dr
- 1 fl dr = 60 minim

Between Systems
- 1 qt ∼ 1 liter
- 1 c = 240 mL
- 1 c = 8 fl oz
- 1 fl oz = 2 T
- 1 fl oz = 30 mL
- 1 t = 5 mL
- 1 minim ∼ 1 gtt
Medical Math vs Intermediately Algebra

Topics

▶ Medical Math: conversions, dosages, flow rates, strength, mixing solutions, . . .

▶ When do students “directly” use any of the above after they become nurses?
Medical Math vs Intermediately Algebra

Topics

- Medical Math: conversions, dosages, flow rates, strength, mixing solutions, . . .

- When do students “directly” use any of the above after they become nurses?

- Often.
Medical Math vs Intermediately Algebra

Topics

- Medical Math: conversions, dosages, flow rates, strength, mixing solutions, . . .

- When do students “directly” use any of the above after they become nurses?

 - Often.

Medical Math vs Intermediately Algebra

Topics

▶ Medical Math: conversions, dosages, flow rates, strength, mixing solutions, . . .

▶ When do students “directly” use any of the above after they become nurses?

▶ Often.

▶ When do students “directly” use any of the above after they become nurses?
Medical Math vs Intermediately Algebra

Topics

▶ Medical Math: conversions, dosages, flow rates, strength, mixing solutions, . . .

▶ When do students “directly” use any of the above after they become nurses?

▶ Often.

▶ When do students “directly” use any of the above after they become nurses?

▶ Not very often.
Medical Math vs Intermediate Algebra

Topics

▶ Medical Math: conversions, dosages, flow rates, strength, mixing solutions, . . .

▶ When do students “directly” use any of the above after they become nurses?

▶ Often.

▶ When do students “directly” use any of the above after they become nurses?

▶ Not very often.
Intermediate Algebra: Accuracy (An Example)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, 250 mg/capsule. How much drug do you administer?

- This is how a typical student would approach the problem.
Intermediate Algebra: Accuracy (An Example)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cafaclor, 250 mg/capsule. How much drug do you administer?

- This is how a typical student would approach the problem.

- First, convert 250 mg to g. Suppose $250 \text{ mg} = x \text{ g}$.
Intermediate Algebra: Accuracy (An Example)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, 250 mg/capsule. How much drug do you administer?

- This is how a typical student would approach the problem.

- First, convert 250 mg to g. Suppose 250 mg = x g.

- Fact: 1 g = 1,000 mg.
Intermediate Algebra: Accuracy (An Example)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cafaclor, 250 mg/capsule. How much drug do you administer?

- This is how a typical student would approach the problem.

- First, convert 250 mg to g. Suppose 250 mg = x g.

- Fact: 1 g = 1,000 mg.

\[
\frac{1 \text{ g}}{1,000 \text{ mg}} = \frac{x \text{ g}}{250 \text{ mg}} \quad \text{OR} \quad 1 \text{ g} : 1,000 \text{ mg} = x \text{ g} : 250 \text{ mg}
\]
Intermediate Algebra: Accuracy (An Example)

The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, 250 mg/capsule. How much drug do you administer?

This is how a typical student would approach the problem.

First, convert 250 mg to g. Suppose 250 mg = \(x\) g.

Fact: 1 g = 1,000 mg.

\[
\frac{1 \text{ g}}{1,000 \text{ mg}} = \frac{x \text{ g}}{250 \text{ mg}}\quad \text{OR}\quad 1 \text{ g} : 1,000 \text{ mg} = x \text{ g} : 250 \text{ mg}
\]

Solve to get \(x = .250\).
Intermediate Algebra: Accuracy (An Example)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, 250 mg/capsule. How much drug do you administer?

- This is how a typical student would approach the problem.

- First, convert 250 mg to g. Suppose 250 mg = \(x\) g.

- Fact: 1 g = 1,000 mg.

- \[
\frac{1 \text{ g}}{1,000 \text{ mg}} = \frac{x \text{ g}}{250 \text{ mg}} \quad \text{OR} \quad 1 \text{ g} : 1,000 \text{ mg} = x \text{ g} : 250 \text{ mg}
\]

- Solve to get \(x = .250\).

-
Continue from **Intermediate Algebra: Accuracy (An Example)**

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, .250 g/capsule. How much drug do you administer?

- Suppose we administer y capsule(s).
Continue from **Intermediate Algebra: Accuracy (An Example)**

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, .250 g/capsule. How much drug do you administer?

- Suppose we administer \(y \) capsule(s).

\[
\frac{.5 \text{ g}}{y \text{ cap}} = \frac{0.25 \text{ g}}{1 \text{ cap}} \quad \text{OR} \quad .5 \text{ g} : y \text{ cap} = .250 \text{ g} : 1 \text{ cap}
\]
The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cafaclor, .250 g/capsule. How much drug do you administer?

Suppose we administer \(y \) capsule(s).

\[
\frac{0.5 \text{ g}}{y \text{ cap}} = \frac{0.25 \text{ g}}{1 \text{ cap}} \quad \text{OR} \quad 0.5 \text{ g} : y \text{ cap} = 0.250 \text{ g} : 1 \text{ cap}
\]

Most students get \(y = 2 \).
The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, .250 g/capsule. How much drug do you administer?

Suppose we administer \(y \) capsule(s).

\[
\frac{0.5 \text{ g}}{y \text{ cap}} = \frac{0.25 \text{ g}}{1 \text{ cap}} \quad \text{OR} \quad 0.5 \text{ g} : y \text{ cap} = 0.250 \text{ g} : 1 \text{ cap}
\]

Most students get \(y = 2 \).

Their answer: administer 2 capsules. (It is not surprising that some get this answer right after they read the question.)
Continue from **Intermediate Algebra: Accuracy (An Example)**

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, 0.250 g/capsule. How much drug do you administer?

- Suppose we administer y capsule(s).

- \[
\frac{0.5 \text{ g}}{y \text{ cap}} = \frac{0.25 \text{ g}}{1 \text{ cap}} \quad \text{OR} \quad 0.5 \text{ g} : y \text{ cap} = 0.250 \text{ g} : 1 \text{ cap}
\]

- Most students get $y = 2$.

- Their answer: administer 2 capsules. (It is not surprising that some get this answer right after they read the question.)
Medical Math: Accuracy (Same Question)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cafaclor, 250 mg/capsule. How much drug do you administer?

- Students who take Medical Math should check and see if it is an overdose first!
Medical Math: Accuracy (Same Question)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cafaclor, 250 mg/capsule. How much drug do you administer?

- Students who take Medical Math should check and see if it is an overdose first!

- Suppose the maximum dose for this patient: 1.5 g qd
Medical Math: Accuracy (Same Question)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cafaclor, 250 mg/capsule. How much drug do you administer?

- Students who take Medical Math should check and see if it is an overdose first!

- Suppose the maximum dose for this patient: 1.5 g qd

- The abbreviation qid means four times a day and qd means every day
Medical Math: Accuracy (Same Question)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, 250 mg/capsule. How much drug do you administer?

- Students who take Medical Math should check and see if it is an overdose first!

- Suppose the maximum dose for this patient: 1.5 g qd

- The abbreviation qid means four times a day and qd means every day

- Oh no! What did we do to our students? . . . to their patients? . . . to ourselves?
Medical Math: Accuracy (Same Question)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, 250 mg/capsule. How much drug do you administer?

- Students who take Medical Math should check and see if it is an overdose first!

- Suppose the maximum dose for this patient: 1.5 g qd

- The abbreviation qid means four times a day and qd means every day

- Oh no! What did we do to our students? ... to their patients? ... to ourselves?
The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cafaclor, 250 mg/capsule, max: 4 g qd (for another patient). How much drug do you administer?

ordered amount = 0.5 g × \(\frac{4}{\text{day}} \) = \(\frac{2}{\text{day}} \) < \(\frac{4}{\text{day}} \) = max
Medical Math: Accuracy (Modified Question)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, 250 mg/capsule, max: 4 g qd (for another patient). How much drug do you administer?

- ordered amount = \(0.5 \text{ g} \times \frac{4}{\text{day}} = \frac{2}{\text{day}} < \frac{4}{\text{day}} = \text{max}\)

- Instructors should always teach students to ensure the ordered amount is not an overdose before any other computations.
Medical Math: Accuracy (Modified Question)

- The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cafaclor, 250 mg/capsule, max: 4 g qd (for another patient). How much drug do you administer?

- ordered amount = \(0.5 \text{ g} \times \frac{4}{\text{day}} = \frac{2}{\text{day}} < \frac{4}{\text{day}} = \text{max}\)

- Instructors should always teach students to ensure the ordered amount is not an overdose before any other computations.

- Administer: \(0.5 \text{ g} \times \frac{1,000 \text{ mg}}{1 \text{ g}} \times \frac{1 \text{ cap}}{250 \text{ mg}} = 2 \text{ tab}\)
Medical Math: Accuracy (Modified Question)

The prescription states: Cefaclor 0.5 g PO qid. The drug label states: Cefaclor, 250 mg/capsule, max: 4 g qd (for another patient). How much drug do you administer?

- ordered amount = 0.5 g × \frac{4}{\text{day}} = \frac{2}{\text{day}} < \frac{4}{\text{day}} = \text{max}

- Instructors should always teach students to ensure the ordered amount is not an overdose before any other computations.

- Administer: \(0.5 \times \frac{1,000 \text{ mg}}{1 \text{ g}} \times \frac{1 \text{ cap}}{250 \text{ mg}} = 2 \text{ tab}\)
Intermediate Algebra: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

- Suppose we need \(x \) mL of the 36.3% solution.
Intermediate Algebra: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

- Suppose we need x mL of the 36.3% solution.

- Suppose we need y mL of the 11.3% solution.
Intermediate Algebra: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

- Suppose we need x mL of the 36.3% solution.

- Suppose we need y mL of the 11.3% solution.

- $x + y = 1,000$
Intermediate Algebra: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

- Suppose we need x mL of the 36.3% solution.

- Suppose we need y mL of the 11.3% solution.

- $x + y = 1,000$

- $36.3\% \cdot x + 11.3\% \cdot y = 17.8\% \cdot 1,000$
Intermediate Algebra: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

- Suppose we need x mL of the 36.3% solution.

- Suppose we need y mL of the 11.3% solution.

- $x + y = 1,000$

- $36.3\% \cdot x + 11.3\% \cdot y = 17.8\% \cdot 1,000$

- Solve the system of two equations.
Intermediate Algebra: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

- Suppose we need x mL of the 36.3% solution.

- Suppose we need y mL of the 11.3% solution.

- $x + y = 1,000$

- $36.3\% \cdot x + 11.3\% \cdot y = 17.8\% \cdot 1,000$

- Solve the system of two equations.

- This approach is about problem solving, deductive reasoning, demonstration of intelligence, . . .
Intermediate Algebra: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

- Suppose we need x mL of the 36.3% solution.

- Suppose we need y mL of the 11.3% solution.

- $x + y = 1,000$

- $36.3\% \cdot x + 11.3\% \cdot y = 17.8\% \cdot 1,000$

- Solve the system of two equations.

- This approach is about problem solving, deductive reasoning, demonstration of intelligence, ...
Medical Math: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

- $1,000 \text{ mL} \times \frac{17.8 - 11.3}{36.3 - 11.3} = 1,000 \text{ mL} \times \frac{6.5}{25} = 40 \text{ mL} \times 6.5 = 260 \text{ mL}$
Medical Math: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

- \[1,000 \text{ mL} \times \frac{17.8 - 11.3}{36.3 - 11.3} = 1,000 \text{ mL} \times \frac{6.5}{25} = 40 \text{ mL} \times 6.5 = 260 \text{ mL}\]

- Answer: Start with 260 mL of the 35% solution, add enough 10% solution until the volume is 1,000 mL.
Medical Math: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

 \[1,000 \text{ mL} \times \frac{17.8-11.3}{36.3-11.3} = 1,000 \text{ mL} \times \frac{6.5}{25} = 40 \text{ mL} \times 6.5 = 260 \text{ mL}\]

- Answer: Start with 260 mL of the 35% solution, add enough 10% solution until the volume is 1,000 mL.

- This approach is about using the most efficient way to solve mixing solution problems.
Medical Math: Efficiency (An Example)

- Describe how to mix a 36.3% solution and a 11.3% solution to get 1,000 milliliter (mL) of 17.8% solution? (No calculator is allowed)

\[
1,000 \text{ mL} \times \frac{17.8 - 11.3}{36.3 - 11.3} = 1,000 \text{ mL} \times \frac{6.5}{25} = 40 \text{ mL} \times 6.5 = 260 \text{ mL}
\]

- Answer: Start with 260 mL of the 35% solution, add enough 10% solution until the volume is 1,000 mL.

- This approach is about using the most efficient way to solve mixing solution problems.
Should students be able to do arithmetic without calculators?

- If you balance their check book without using the electronic devices, please raise your hand?
- We are in the 21st Century.
Should students be able to do arithmetic without calculators?

- If you balance their check book without using the electronic devices, please raise your hand?
- We are in the 21st Century.
- Remember the big storm Katrina. I was told that many nurses wished their arithmetic skills were better then!
Should students be able to do arithmetic without calculators?

- If you balance their check book without using the electronic devices, please raise your hand?
- We are in the 21st Century.
- Remember the big storm Katrina. I was told that many nurses wished their arithmetic skills were better then!
- Should instructors teach and require students to do some Medical Math problems without calculators?
Should students be able to do arithmetic without calculators?

- If you balance their checkbook without using the electronic devices, please raise your hand?
- We are in the 21st Century.
- Remember the big storm Katrina. I was told that many nurses wished their arithmetic skills were better then!
- Should instructors teach and require students to do some Medical Math problems without calculators?
Calculator Statement in Syllabus

No calculators will be allowed on Tests 1 and 2. Students will need a scientific calculator for Tests 3 and 4. The use of a calculator is not permitted on the first part of the final examination. A scientific calculator is needed for the second part of the final examination. The first part of the final examination constitutes more than 50% of the overall final exam score.
Grading Scale in Syllabus

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>A</th>
<th>A-</th>
<th>B+</th>
<th>B</th>
<th>B-</th>
<th>C+</th>
<th>C</th>
<th>C-</th>
<th>D+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Overall %</td>
<td>93</td>
<td>90</td>
<td>87</td>
<td>83</td>
<td>80</td>
<td>78</td>
<td>73</td>
<td>70</td>
<td>67</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Final %</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>73</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Other classes min.</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final Project & E-portfolio</th>
<th>4 tests Participation</th>
<th>HW & Quizzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>4%</td>
<td>14% each</td>
</tr>
</tbody>
</table>
Surprise! Students can do Mathematics!

- Some recent students’ achievements:
 - SLCC student won 1st place in the State Skill USA Medical Math Competitions in 2013.
The Triumph of the Human Spirit!

Surprise! Students can do Mathematics!

- Some recent students’ achievements:
- SLCC student won 1st place in the State Skill USA Medical Math Competitions in 2013.
- In year 2012, SLCC student won National Skill USA Medical Math Competitions.
The Triumph of the Human Spirit!

Surprise! Students can do Mathematics!

- Some recent students’ achievements:
- SLCC student won 1st place in the State Skill USA Medical Math Competitions in 2013.
- In year 2012, SLCC student won National Skill USA Medical Math Competitions.
Curriculum Change

- This is the last semester that Math 1020 is taught.
- Students will need Math 1050 College Algebra and Math 1040 Statistics as prerequisite to SLCC nursing program.
Curriculum Change

- This is the last semester that Math 1020 is taught.
- Students will need Math 1050 College Algebra and Math 1040 Statistics as prerequisite to SLCC nursing program.
Thank you for coming!

Thank you for attending this session!
Enjoy the rest of the AMATYC conference!
Shane Tang
Shane.Tang@slcc.edu

Medical Math vs Intermediate Algebra

AMATYC Section Identification Code: S061

October 31, 2013
The scariest day of the year!