1. The listing method of the set \(\{ x | (x+1)(x-2)(x^2+1)=0, x \in \mathbb{R} \} \) can be expressed as ________.

2. The range of the equation \(f(x) = 2x+3 \) is \(\{-1, 2, 5, 8\} \), the domain is \(\{ \text{____} \} \).

3. If \(f(2x) = 3x^2+1 \), then the equation of \(f(x) \) is ________.

4. If set \(A \) satisfy \(\{1\} \cup A = \{1, 3, 5\} \), then set \(A = \text{_______} \).

5. The graph of \(f(x) = ax^{-1}-3 \) must pass the fixed point ________.

6. \(f(x) = \begin{cases}
2, & x \leq 0 \\
3x^2-4, & x > 0
\end{cases} \) then \(f(f(-2)) = \text{_______} \).

7. If \(A = [1, 4) \), \(B = (-\infty, a) \), if \(A \subseteq B \), then the domain of real number \(a \) is ________.

8. \(a = 0.3^2 \), \(b = 2^{0.3} \), \(c = \log_{0.3} 2 \), list \(a, b, c \) from the smallest to the largest ________.

9. \(U = \{1, 2, 3, 4, 5\} \), \(A \cap (C \cup B) = \{1\} \), \(B \cap (C \cup A) = \{5\} \), \((C \cup A) \cap (C \cup B) = \{2\} \), then set \(A = \text{_______} \).

10. Function \(y = -x^2+4ax \) is absolutely increasing on the interval \([1, 3]\), then the domain of real number \(a \) is ________.

11. \(f(x) \) is an odd function, then \(f(\sqrt{3}+2)+f(\sqrt{3}-2)=\text{_______} \).

12. The range of \(f(x) = \frac{x^2}{x^2+10} \) \(\text{_______} \), \(x \in \mathbb{R} \) is ________.
13. Suppose positive integer m satisfies $10^{m-1} < 2^{512} < 10^m$, then $m = \underline{11}$ ($\lg 2 \approx 0.3010$).

14. $y = x$ is the line of symmetry of $f(x) = (x^2)^x$ and $g(x)$, let $h(x) = g(1 - |x|)$, then $h(x)$ has the following characteristics:
 (1) The symmetry for $h(x)$ is the origin
 (2) $h(x)$ is even
 (3) The minimum value for $h(x)$ is 0
 (4) $h(x)$ is decreasing on the interval $(0, 1)$

 The correct statement is \underline{1} (fill in all the correct #s).

15. Set $A = \{1, a^2 + 1, a^2 - 3\}$, $B = \{-4, a-1, a+1\}$, and $A \cap B = \{-2\}$ find the value of a.

16. Compute:
 (1) $(2^{-\frac{3}{5}})^0 + 2^{-2} \cdot (2^{\frac{1}{4}})^{-\frac{1}{2}} - (0.01)^{0.5}$
 (2) $2^{3\log_2 4} + 3^{\log_2 1} - \log_{10} 3 \cdot \log_3{2} - \log{5}$

17. α, β are two zeros of $y = x^2 - 2kx + 6$.
 (1) Find the equation of $f(k) = (\alpha - 1)^2 + (\beta - 1)^2$ and find the domain.
 (2) Find the minimum value of $f(k)$ and find k's value when $f(k)$ has a minimum value.

18. $f(x) = ax^2 + bx + cx$, inequality the solution of the inequality $f(x) > -2x$ is $(1, 3)$
 (I) If $f(x) + 6a = 0$ has 2 equal real roots, find the equation for
 $f(x)$.
 (II) If the maximum value of $f(x)$ is a positive number, find
 the range of a.
19. The value \(y \) (dollars) of a diamond and the square of its weight \(x \) (in carats) are positively correlated. A 3 carats of the diamond is $54,000.

(I) Write a function of \(y \) into term of \(x \).

(II) If cut the diamond into 2 piece according to 1:3, find the percentage of loss.

(III) If cut the diamond into 2 pieces, and the weight of the 2 pieces are \(m \) carats and \(n \) carats, prove: when \(m=n \), the percentage of loss is the greatest.

(Note: Percentage of loss = \(\frac{\text{Origin Value} - \text{Present Value}}{\text{Origin Value}} \times 100\% \))

20. If function \(f(x) \) satisfies: for any \(x \in D \), there exists a constant \(M > 0 \), and if \(|f(x)| \leq M \) exists, then \(f(x) \) is a limit function of \(D \), then \(M \) is the upper limit of \(f(x) \).

Knowing that \(f(x) = 1 + \alpha \left(\frac{1}{2} \right)^x + \left(\frac{1}{4} \right)^x \), \(g(x) = \frac{1 - m \cdot 2^x}{1 + m \cdot 2^x} \)

(1) When \(\alpha = 1 \), find the range of \(f(x) \) in the interval of \((-\infty, 0)\), and tell if \(f(x) \) in the interval \((-\infty, 0)\) is an upper limit function and explain the reason.

(2) If 3 is the upper limit of \(f(x) \) in the interval \([0, +\infty)\), find the domain of the real number \(\alpha \).

(3) If \(m > 0 \), the upper limit of \(g(x) \) in the interval \([0, 1]\) is \(T(m) \), find \(T(m) \) the domain of \(T(m) \).
Third Year Math Exercises (High School)

1. Given the top of the parabola \(C \) is the origin, its focus is on the x-axis, line \(y = x \) and the parabola \(C \) intercept at two points \(A \) and \(B \). If \(P(2,2) \) is the midpoint of \(AB \), then the equation of the parabola \(C \) is ________.

2. In \(\triangle ABC \), \(\overrightarrow{AB} \cdot \overrightarrow{BC} = 3 \), \(\triangle ABC \)'s surface area \(S_{\triangle ABC} \in [\frac{\sqrt{3}}{2}, \frac{3}{2}] \), then the angle between \(\overrightarrow{AB} \) and \(\overrightarrow{BC} \) is ________.

3. Suppose the focus of the parabola \(y^2 = 2px \) \((p > 0) \) is \(F \), Point \(A(0,2) \) If line segment's midpoint \(B \) is on the parabola, then the distance from \(B \) to the directrix of the parabola is ________.

4. Given that the distance between the moving point \(P \) and fixed point \((2,0) \) and the distance between \(P \) and straight line \(L: x = -2 \) are equal, then point \(P \)'s equation is ________.

5. In rectangle system \(xOy \), Suppose \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) \((a > b > 0) \) the focus is \(2c \). From \(O \) as the center make a circle with radius \(a \). If the tangent lines passing \(P(\frac{a^2}{c}, 0) \) and the circle \(M \) are perpendicular, then the eccentricity of the \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is ________.

6. Make a straight line passing through \((0,1) \). The line share only one common point with parabola \(y^2 = 4x \). How many such lines exist ?

7. Line \(y = b \) and \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) intersected at two points \(A \) and \(B \), \(\angle AOB = 90^\circ \) \((O \) is the origin). The slope of the asymptote is ________.
8. \(P \) is a point on the left curve of \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) \((a>0, b>0)\). \(F_1, F_2 \) are the left and right foci. \(\overrightarrow{PF_1} \cdot \overrightarrow{PF_2} = 0 \), \(\tan \angle PF_2F_1 = \frac{2}{3} \), the eccentricity of \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) is ________.

9. Given piecewise defined \(\begin{cases} x \geq 0, y \geq 0 \\ y \leq -2x + 2\sqrt{2} \\ y \leq kx + \sqrt{2} \end{cases} \), the range \(D \) is completely covered by a circle with radius 1, then the range of the real number \(k \) is ________.

10. From the moving point \(P \) toward \(\frac{x^2}{4} + y^2 = 1 \) make 2 tangent lines \(PA, PB \). The points of tangency are \(A, B \), \(\angle APB = 90^\circ \), the equation of the moving point \(P \) is ________.

11. The line passes through the focus of \(y^2 = 4x \) intersects the parabola in 2 points \(A, B \). passing \(B \) make a perpendicular line to the directrix \(L \), the point of intersection is \(C \). Given \(A(4,4) \), then line \(AC \)'s equation is ________.

12. \(O \) is the origin for \(y^2 = 4x \), \(A, B \) are two moving points on the parabola, \(OA \perp OB \), when line \(AB \)'s angle is \(45^\circ \), the surface area of \(\triangle AOB \) is ________.

13. Given \(x^2 = 4y \), point \(F \) is the focus of the parabola, the point of intersection of the directrix and \(y \)-axis is \(M \), \(N \) is a point of on the parabola, \(|NF| = \frac{\sqrt{3}}{2} |MN| \), \(\angle NMF \) ________.
14. Compare "The sum and difference of the law of Sine and cosine", for the given functions

\[S(x) = \frac{e^x - e^{-x}}{2} \quad \text{and} \quad C(x) = \frac{e^x + e^{-x}}{2} \]

Write a correct computational equation———

15. On There are 2 points A, B on \(y^2 = 4x \), Point F is the focus of the parabola, O is the origin, if \(\overrightarrow{FO} + 2\overrightarrow{FA} + 3\overrightarrow{FB} = \overrightarrow{0} \), then the point of intersection of line AB and X-axis is———

16. F is the left focus of \(\frac{x^2}{16} - \frac{y^2}{9} = 1 \). On the right side of F of the X-axis, there is a point A, The points of intersection of the circle with radius FA and the 2 curves (above X-axis) are M, N, The value of \(\frac{|FN| - |FM|}{|FA|} \) is———