CH 1

1. Given that
$$f(x) = \frac{x-4}{2-x}$$
, find $f\left(-\frac{2}{3}\right)$.

2. Let
$$g(x) = \frac{\frac{5}{x-2} + \frac{3}{x}}{\frac{1}{x} - \frac{4}{x-2}}$$
, find $g(a+1)$.

3. Find k such that the slope of the line containing
$$\left(-\frac{3}{2},k\right)$$
 and $\left(\frac{1}{4},-\frac{4}{5}\right)$ is $\frac{8}{9}$.

QUIZ CH 2

Let
$$f(x) = \frac{3-x}{x+1}$$
 and $g(x) = \frac{4}{5x-3}$.

Find the following:

a.
$$f(x) - g(x)$$
 and its domain

b.
$$f(g(x))$$
 and its domain

c.
$$g(f(2))$$

CH 3

$$a. \ \frac{x}{x+1} - \frac{x-4}{x-1}$$

a.
$$\frac{1}{r} + \frac{2}{1-r} = \frac{4}{r^2}$$

$$b. \left(\frac{x}{x+2}\right)^2 = \frac{4x}{x+2} - 4$$

c.
$$x^{-4} - 13x^{-2} + 36 = 0$$

CH 4

- 1. Let $f(x) = \frac{2x+1}{x-3}$. Find the following:
 - a. domain
 - b. f(0)
 - c. zeros of f(x)
 - d. x such that $f(x) = -\frac{2}{5}$
 - e. x such that f(x) < 2

2. Solve.

$$\frac{4-x}{x-1} < x$$

3. Find the domain of

$$f(x) = \sqrt[4]{\frac{1}{x} - \frac{1}{2x - 1}}$$

CH 5

1. Simplify.

$$\log\left(1 - \frac{1}{x}\right) - \log\left(1 + \frac{1}{x}\right)$$

2. Solve.

$$5^{\left(\frac{1}{x} - \frac{2}{x-2}\right)} = 125$$

3. Find the domain of

$$f(x) = \log_3\left(\frac{x+1}{x-3} + 2\right)$$

CH 6

Solve by substitution or elimination or a combination of both. 1.

$$\frac{2x-1}{3} + \frac{y+2}{4} = 4$$

a.
$$\frac{2x-1}{3} + \frac{y+2}{4} = 4$$
$$\frac{x+3}{2} - \frac{x-y}{3} = 3$$

$$\frac{2}{x} + \frac{3}{y} - \frac{2}{z} = -1$$

b.
$$\frac{8}{x} - \frac{12}{y} + \frac{5}{z} = 5$$

$$\frac{6}{x} + \frac{3}{y} - \frac{1}{z} = 1$$

College Algebra/

Precalculus Exponential Functions

1. True or False? Justify your answer.

a. If y = 4 is a horizontal asymptote of an exponential function $f(x) = a^x$, then $as \ x \to \infty$, $f(x) \to 4$ or $as \ x \to -\infty$, $f(x) \to 4$.

b. Let
$$f(x) = a^x$$
. If $f(x) \to 0$ as $x \to -\infty$, then $a > 0$.

c. Let y = -3 be a horizontal asymptote of an exponential function $f(x) = a^x$, a > 1. Then the end behavior of the exponential function is described by $as \ x \to \infty$, $f(x) \to -3$.

2. Complete the statements.

a. If
$$f(x) = a^x$$
, $a > 1$, then $\lim_{x \to \infty} a^x =$

b. If
$$f(x) = a^x$$
, $a = 1$, then $\lim_{x \to \infty} a^x =$

c. If
$$f(x) = a^x$$
, $0 < a < 1$, then $\lim_{x \to \infty} a^x =$

3. Sketch the graph of of
$$f(x) = \begin{cases} -e^{-x} & x < 0 \\ e^{x} & x \ge 0 \end{cases}$$
. Complete the statements below.

as
$$x \to \infty$$
, $f(x) \to$

as
$$x \to -\infty$$
, $f(x) \to -\infty$

as
$$x \to 0^-$$
, $f(x) \to$

as
$$x \to 0^+$$
, $f(x) \to$

Is the statement as $x \to 0$, $f(x) \to 1$ true?

College Algebra/

Precalculus Logarithmic Functions

- **1. Suppose that** $G(x) = \log_3(2x+1) 2$.
- a. What is the domain of G?
- b. What does G(x) approach as $as x \rightarrow -\frac{1}{2}^+$?
- c. What is the equation of the vertical asymptote of the function?
- 2. Use the properties of logarithms and transformations to describe how the graph of the given function compares to the graph of f(x) = lnx.

a.
$$g(x) = \ln(-x)$$

b.
$$h(x) = \ln\left(\frac{x}{e^2}\right)$$

How do the given transformations impact the end behavior of the parent function $f(x) = \ln(x)$? Do either of these transformations affect the equation of the vertical asymptote?

Function	y = 3	$f(x) = (x-2)^2 + 1$	f(x) = 1 - x	$y = \sqrt{x+1}$
Graph	y x	y	y x	y x
Domain				
Range				
Complete the	$y \rightarrow as x \rightarrow \infty$	$f(x) \to as \ x \to \infty$	$f(x) \to as x \to \infty$	$y \rightarrow as x \rightarrow \infty$
statements	$y \rightarrow as x \rightarrow -\infty$	$f(x) \to as \ x \to -\infty$	$f(x) \to as \ x \to -\infty$	$y \rightarrow as x \rightarrow 3$
		$f(x) \to as \ x \to 2$	$f(x) \to 1$ as $x \to$	$y \rightarrow as x \rightarrow -1^+$

Use it to graph y = sec x

Step 1: Note that $\sec x = \frac{1}{\cos x}$ so start by graphing $y = \cos x$ as before but dotted or lightly.

Step 2: Where does $\cos x = 0$? What does this tell us about the domain of $y = \sec x$? Wherever the cosine graph crosses the *x*-axis you get $\cos x = 0$, so $\sec x$ will be undefined there. Put in vertical asymptotes in those places.

Step 3: Plot some points for $y = \sec x$. Start with the values of x that give the maximum and minimum y values for $y = \sin x$. Then plot some additional points.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 2010/05 101)		m procesome.	I I			
x	$-\pi$	0	π	$-\frac{3\pi}{4}$	$-\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{3\pi}{4}$
$y = \cos x$							
$y = \sec x$							

Step 4: The two graphs share the high and low points, but what happens at the places where $\sin x = 0$?

Start with $x = \frac{\pi}{2}$. What happens to $\frac{1}{\sin x}$ as you get closer and closer from the right side, in other words, as $x \to \frac{\pi^-}{2}$, $y \to$ _____. And $x \to \frac{\pi^+}{2}$, $y \to$ _____.

Use this behavior near the asymptotes to complete the remainder of the graph.

2. Given $y = \sin x$

Use it to graph $y = \csc x$

Step 1: Note that $\csc x = \frac{1}{\sin x}$ so start by graphing $y = \sin x$ as before but dotted or lightly.

Step 2: Where does $\sin x = 0$? What does this tell us about the domain of $y = \csc x$? Wherever the sine graph crosses the *x*-axis you get $\sin x = 0$, so $\csc x$ will be undefined there. Put in vertical asymptotes in those places.

Step 3: Plot some points for $y = \csc x$. Start with the values of x that give the maximum and minimum y values for $y = \sin x$. Then plot some additional points.

х	$-\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{3\pi}{2}$	$-\frac{3\pi}{4}$	$-\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{3\pi}{4}$
$y = \sin x$							
$y = \csc x$							

Step 4: The two graphs share the high and low points, but what happens at the places where $\sin x = 0$?

Start with x = 0. What happens to $\frac{1}{\sin x}$ as you get closer and closer from the right side, in other words, as $x \to 0^-$, $y \to$ _____. And $x \to 0^+$, $y \to$ _____.

Use this behavior near the asymptotes to complete the remainder of the graph.

3. Given the graphs of $y = \sin x$ and $y = \cos x$, graph $y = \tan x$

Step 1: Note that $\tan x = \frac{\sin x}{\cos x}$ so start by graphing $y = \cos x$ as before but dotted or lightly.

Step 2: Where does $\cos x = 0$? What does this tell us about the domain of $y = \tan x$? Wherever the cosine graph crosses the x-axis you get $\cos x = 0$, so $\tan x$ will be undefined there. Put in vertical asymptotes in those places.

Step 3: Plot some points for $y = \tan x$. Start with the values of x that give the similar y values for $v = \sin x$ and $v = \cos x$. Then plot some additional points.

	_ y = m // time y = tes // m prot some traditional points.						
X	$-\frac{3\pi}{4}$	$-\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{3\pi}{4}$	$-\pi$	0	π
$y = \sin x$							
$y = \cos x$							
$y = \tan x$							

Step 4: Now consider what happens at the places where $\cos x = 0$?

Start with $x = \frac{\pi}{2}$. What happens to $\frac{\sin x}{\cos x}$ as you get closer and closer from the right side, in other words, as $x \to \frac{\pi^-}{2}$, $y \to$ _____.

Use this behavior near the asymptotes to complete the remainder of the graph.

4. Given the graphs of $y = \sin x$ and $y = \cos x$, graph $y = \cot x$ Step 1: Note that $\cot x = \frac{\cos x}{\sin x}$ so start by graphing $y = \sin x$ as before but dotted or lightly.

Step 2: Where does $\sin x = 0$? What does this tell us about the domain of $y = \cot x$? Wherever the sine graph crosses the *x*-axis you get $\sin x = 0$, so $\cot x$ will be undefined there. Put in vertical asymptotes in those places.

Step 3: Plot some points for $y = \cot x$. Start with the values of x that give the similar y values for $y = \sin x$ and $y = \cos x$. Then plot some additional points.

	y sinv unit y too w. Then provision points.						
x	$-\frac{3\pi}{4}$	$-\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{3\pi}{2}$
$y = \sin x$							
$y = \cos x$							
$y = \cot x$							

Step 4: Now consider what happens at the places where $\sin x = 0$? Start with x = 0. What happens to $\frac{\cos x}{\sin x}$ as you get closer and closer from the right side, in other words, as $x \to 0^-$, $y \to$ _____. And $x \to 0^+$, $y \to$ ____. Use this behavior near the asymptotes to complete the remainder of the graph.

no x-intercept		
no y-intercept		
no intercepts		
odd		
average rate of change on [-1,1] is constant		
even		

$$f(x) = \frac{x-5}{x^2-25}$$

$$as x \to 5, f(x) \to \frac{1}{10}$$

$$f(x) = -\frac{1}{x+5} + 1$$

$$as x \to \infty, f(x) \to 1$$

 $as x \to -5^+, f(x) \to -\infty$

$$f(x) = \begin{cases} \frac{x-1}{2x-2}, & x \neq 1 \\ -\frac{1}{10}, & x = 1 \end{cases}$$

$$as x \to 5, f(x) \to \frac{1}{2}$$

$$f(x) = -\frac{1}{10}x + \frac{3}{2}$$

$$as x \to 5, f(x) \to 1$$

 $as x \to \infty, f(x) \to -\infty$

$$f(x) = \frac{x+5}{x^2-25}$$

$$as x \to 5^-, f(x) \to -\infty$$

 $as x \to -5, f(x) \to -\frac{1}{10}$

LIMIT MATCHING Designed by Karen Summerson Ivana Seligova

INSTRUCTIONS
Print 1 set for each
group
Cut cards apart
Have students match

USES
Reviewing rational
functions and limit
concepts
College Algebra – Calc I

f(0)=1		
f(-1) = 0		
f(-1) = 2		
f(1) = 1		
f(2) = -1		
f(-1) = f(1)		

College Algebra/Precalculus

Piecewise Functions 1

1. Use the graph of the function f(x) given below to find:

a. as
$$x \to \infty$$
, $f(x) \to \infty$

b. as
$$x \to -\infty$$
, $f(x) \to -\infty$

c. as
$$x \to 2^-, f(x) \to$$

d. as
$$x \rightarrow 2^+, f(x) \rightarrow$$

2. Sketch a graph of a piecewise function f(x) given the properties.

as
$$x \rightarrow -1^-$$
, $f(x) \rightarrow 1$

as
$$x \rightarrow -1^+, f(x) \rightarrow 2$$

as
$$x \to 2^-$$
, $f(x) \to -1$

as
$$x \rightarrow 2^+, f(x) \rightarrow -2$$

$$f(-1) = 1$$
 and $f(2) = -2$

3. Graph the piecewise function. Then answer the limit questions.

$$f(x) = \begin{cases} x+1 & x \neq 3 \\ 2 & x=3 \end{cases}$$

a.
$$as x \rightarrow 3^-, f(x) \rightarrow$$

b. as
$$x \rightarrow 3^+, f(x) \rightarrow$$

c.
$$f(3) =$$

Precalculus

Piecewise Functions 2

1. Graph the piecewise function then answer the limit questions.

$$f(x) = \begin{cases} \sin x & x \ge 0 \\ \cos x & x < 0 \end{cases}$$

a. as
$$x \rightarrow 0^-, f(x) \rightarrow$$

b. as
$$x \rightarrow 0^+, f(x) \rightarrow$$

c. as
$$x \to 0$$
, $f(x) \to 0$

d.
$$f(0) =$$

2. Graph the piecewise function then answer the limit questions.

$$f(x) = \begin{cases} \tan \frac{\pi x}{4} & -1 < x < 1 \\ x & x \le -1 \quad or \quad x \ge 1 \end{cases}$$

a.
$$as x \rightarrow 1^-, f(x) \rightarrow$$

b. as
$$x \rightarrow 1^+, f(x) \rightarrow$$

c. as
$$x \rightarrow -1^-$$
, $f(x) \rightarrow$

d. as
$$x \rightarrow -1^+$$
, $f(x) \rightarrow$

- 3. Rewrite the function $f(x) = \frac{|x-3|}{x-3}$ so that it is defined piecewise.
- **a.** Sketch the graph of f(x).
- **b.** Complete the statements:

as
$$x \rightarrow 3^+, f(x) \rightarrow$$

as
$$x \rightarrow 3^-, f(x) \rightarrow$$

$$as x \rightarrow 3, f(x) \rightarrow$$

4. Let f(x) be a piecewise function and b a positive real number. Graph the piecewise function then answer the limit questions.

$$f(x) = \begin{cases} 0 & 0 \le x < b \\ b & b < x \le 2b \end{cases}$$

b. as
$$x \rightarrow b^+, f(x) \rightarrow$$

c.
$$f(0) =$$

d.
$$f(b) =$$

e.
$$f(2b) =$$

5. Let f(x) = [x] and let b be any integer. Sketch the graph of f(x) and answer the questions below.

a. as
$$x \rightarrow b^-$$
, $f(x) \rightarrow$

b. as
$$x \rightarrow b^+, f(x) \rightarrow$$

6. Let f(x) be defined piecewise. For what value of the constant c will f(x) approach the same value as x approaches 3 from either side?

$$f(x) = \begin{cases} cx+1 & \text{if } x \le 3\\ cx^2-1 & \text{if } x > 3 \end{cases}$$

1.
$$f(x) = \begin{cases} 1 - x & \text{if } x \le -1 \\ \sqrt{x+1} & \text{if } x > -1 \end{cases}$$

2.
$$f(x) = \begin{cases} 1 + x & \text{if } x < 0 \\ x^2 & \text{if } x \ge 1 \end{cases}$$

3.
$$f(x) = \begin{cases} x^2 + 1 & \text{if } x < 0 \\ -x^2 - 1 & \text{if } 0 < x \le 2 \end{cases}$$

3.
$$f(x) = \begin{cases} x^{2} + 1 & \text{if } x < 0 \\ -x^{2} - 1 & \text{if } 0 < x \end{cases}$$

$$4. \quad f(x) = \begin{cases} -1 & \text{if } x \le -1 \\ x^{3} & \text{if } -1 < x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

$$5. \quad f(x) = \begin{cases} 2x & \text{if } x \neq 2 \\ -1 & \text{if } x = 2 \end{cases}$$

6.

$$f(x) = \begin{cases} x & \text{if } x < -1 \\ -x^2 & \text{if } |x| \le 1 \\ -x & \text{if } x > 1 \end{cases}$$

Piecewise Functions - Sketches

1.
$$f(x) = \begin{cases} 1 - x & \text{if } x \le -1 \\ \sqrt{x+1} & \text{if } x > -1 \end{cases}$$

$$f(x) = \begin{cases} 1 + x & \text{if } x < 0 \\ x^2 & \text{if } x \ge 1 \end{cases}$$

2.
$$f(x) = \begin{cases} 1+x & \text{if } x < 0 \\ x^2 & \text{if } x \ge 1 \end{cases}$$
 3. $f(x) = \begin{cases} x^2+1 & \text{if } x < 0 \\ -x^2-1 & \text{if } 0 < x \le 2 \end{cases}$

4.
$$f(x) = \begin{cases} -1 & \text{if } x \le -1 \\ x^3 & \text{if } -1 < x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

5.
$$f(x) = \begin{cases} 2x & \text{if } x \neq 2 \\ -1 & \text{if } x = 2 \end{cases}$$

6.
$$f(x) = \begin{cases} x & \text{if } x < -1 \\ -x^2 & \text{if } |x| \le 1 \\ -x & \text{if } x > 1 \end{cases}$$

Follow up Question:

1.

increasing on $(-1,\infty)$	$y \rightarrow 1 \ as \ x \rightarrow 0^-$		
$y \rightarrow 1 \ as \ x \rightarrow 0^-$			
$y \rightarrow -1 \ as \ x \rightarrow 0^+$			
increasing on (-1,1)			
$y \rightarrow 4 \ as \ x \rightarrow 2$			
decreasing on $(0,\infty)$			

College Algebra Polynomial Functions

Let f(x) be a polynomial function. Complete the table below.

DEGREE EVEN/ODD	LEADING COEFFICIENT +/-	$as x \rightarrow \infty$	$as x \rightarrow -\infty$
EVEN		$f(x) \to \infty$	$f(x) \rightarrow$
		$f(x) \rightarrow -\infty$	$f(x) \to \infty$
ODD	-	$f(x) \rightarrow$	$f(x) \rightarrow$
EVEN	+	$f(x) \rightarrow$	$f(x) \rightarrow$
ODD		$f(x) \to \infty$	$f(x) \rightarrow$
	-	$f(x) \rightarrow -\infty$	$f(x) \to -\infty$

Chlorine Levels

Chlorine is often added to swimming pools to control microorganisms. The ideal level will be between 1 and 3 ppm. If the level of chlorine rises above 3 ppm (parts per million), swimmers will experience burning eyes. If the level drops below 1 ppm, there is a possibility that algae will form. Chlorine must be added to pool water at regular intervals. In a simplified description, if no chlorine is added to a pool during a 24-hour period, approximately 20% of the chlorine will dissipate into the atmosphere and 80% will remain in the water.

- a. Determine a recursive sequence a_n , that expresses the amount of chlorine present after n days if the pool has a_0 ppm of chlorine initially and no chlorine is added.
- b. If a pool has 7 ppm of chlorine initially, construct a table to determine the first day on which the chlorine level will drop below 3 ppm.
- c. What happens after 7 days, as the chlorine level continues to drop?
- d. What do you predict will happen to the chlorine level after several weeks if no new chlorine is added?

$D: (-\infty, \infty)$ $R: (0, \infty)$		
D: $(-\infty,0) \cup [1,\infty)$ R: $(-\infty,\infty)$		
D: $(-\infty,0) \cup (0,2]$ R: $[-5,-1) \cup (1,\infty)$		
D: $(-\infty, \infty)$ R: $[-1,1]$		
$D: (-\infty, \infty)$ $R: (-\infty, 4) \cup (4, \infty)$		
$D: (-\infty, \infty)$ $R: (-\infty, 0]$		