A Talk on Real Infinite Series

Pre-Algebra through Calculus II

1st Grade

Kirby Bunas
Mathematics Department
Santa Rosa Junior College
kbunas@santarosa.edu

Infinite sequence: \(\{a_n\} = a_1, a_2, a_3, \ldots \)
0.3, 0.03, 0.003, 0.0003, 0.00003, ... converges to 0

Infinite series: \(\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots \)
0.3 + 0.03 + 0.003 + 0.0003 + ... converges to 1/3

Convergence tests for series

- \(r \)-test
- Comparison tests
- Integral test
- Geometric series
- Telescoping series
- p-series
- Ratio & root tests

Purpose of talk:

- Explore fun real infinite series examples and proofs.
- Provide ideas for introducing infinite series to students who are not yet in college level mathematics.

Zeno of Elea (ca. 490-430 BC)

Zeno’s Dichotomy Paradox:

“That which is in locomotion must arrive at the half-way stage before it arrives at the goal.”

Aristotle, ca. 350 BC

\[
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots = \frac{a}{1-r} = \frac{1}{1-\frac{1}{2}} = 1
\]

\[
\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{2}{n^2} \right) = \frac{3\pi}{4}
\]

\[
\sum_{n=1}^{\infty} \frac{1}{5^n} = \frac{1}{4}
\]

\[
1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots = \ln 2
\]

\[
1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots = \infty
\]
Don Cohen "The Mathman" 1930-2015
- Calculus By and For Young People (ages 7, yes 7 and up)
- Website: mathman.biz

Partial sums notation:
\[S_1 = \frac{1}{2} \]
\[S_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \]
\[S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8} \]
\[S_4 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{15}{16} \]

The sequence of partial sums approaches 1, and therefore,
\[\sum \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots = 1. \]

A geometric series with first term \(a \) and common ratio \(r \) converges to
\[\frac{a}{1-r} \] if and only if \(-1 < r < 1\).

Proof:
\[S_n = a + ar + ar^2 + \cdots + ar^{n-1} \]
\[rS_n = ar + ar^2 + ar^3 + \cdots + ar^{n-1} + ar^n \]

\[S_n - rS_n = a - ar^n \]
\[S_n = \frac{a - ar^n}{1-r} \]

As \(n \to \infty \), \(ar^n \to 0 \) if and only if \(-1 < r < 1\).

\[\sum (\text{Geometric Series}) = \frac{\text{first term}}{1-\text{common ratio}} \] for \(|r| < 1\).

The Harmonic Series:
\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \cdots \]

- For compilations of proofs of the divergence of the harmonic series, see references at the end of this talk.
- Perhaps the most commonly shown proof is Oresme’s proof and the integral test proof (neither of which I include in this talk).
- My goal was to find a proof which I could show pre-algebra students.

Let’s assume that the harmonic series converges to a finite sum \(S \), and group the terms in pairs:

\[S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \cdots \]
\[= (1 + \frac{1}{2}) + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{6}) + (\frac{1}{7} + \frac{1}{8}) + \cdots \]
\[> (\frac{1}{2} + \frac{1}{2}) + (\frac{1}{2} + \frac{1}{2}) + (\frac{1}{2} + \frac{1}{2}) + (\frac{1}{2} + \frac{1}{2}) + \cdots \]
\[= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots = S \]

\(S > S \) is a false statement, and so by contradiction, the harmonic series cannot converge to \(S \), and therefore must diverge.

- Leonard Gillman (1917-2009), from "Leonard Gillman: An Interview (Part 2)" by Rachel Metzke
Or, we could form groups of three terms...

\[S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \frac{1}{13} + \frac{1}{21} + \cdots \]

\[= \left(1 + \frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{5} + \frac{1}{8} + \frac{1}{13}\right) + \left(\frac{1}{21} + \frac{1}{34} + \cdots\right) \]

\[> \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{8} + \frac{1}{13}\right) + \left(\frac{1}{21} + \frac{1}{34} + \cdots\right) \]

\[= 1 + \frac{1}{2} + \frac{1}{3} + \cdots \]

\[= S \]

... or groups of \(k \geq 2 \) terms

\[S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \frac{1}{13} + \frac{1}{21} + \cdots \]

\[= \left(1 + \cdots + \frac{1}{k}\right) + \left(\frac{1}{2k+1} + \cdots + \frac{1}{3k}\right) + \cdots \]

\[> \left(\frac{1}{2k+1} + \cdots + \frac{1}{3k}\right) + \cdots \]

\[= \frac{k}{k} + \frac{k}{2k} + \frac{k}{3k} + \cdots \]

\[= 1 + \frac{1}{2} + \frac{1}{3} + \cdots \]

\[= S \]

Grouping (starting with \(\frac{1}{2} \)) according to the Fibonacci Sequence 1, 1, 2, 3, 5, 8, ...

\[\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \frac{1}{13} + \frac{1}{21} + \cdots \]

\[= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{5} + \frac{1}{8}\right) + \left(\frac{1}{13} + \frac{1}{21} + \frac{1}{34}\right) + \cdots \]

\[> 1 + \frac{1}{2} + \frac{1}{3} + \frac{2}{5} + \frac{3}{8} + \frac{5}{13} + \frac{8}{21} + \cdots \]

\[= 1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \frac{1}{13} + \frac{1}{21} + \cdots \]

But \(\sum_{k=1}^{\infty} \frac{1}{k} \) diverges by the Test for Divergence because

\[\lim_{k \to \infty} \frac{F_{n+1}}{F_n} = \lim_{k \to \infty} \frac{F_{n+1}}{F_n} = \lim_{k \to \infty} \left(1 + \frac{1}{F_n}\right) = 1 - \frac{1}{\varphi} \neq 0 \]

(The proof that \(\lim_{n \to \infty} \left(\frac{F_n}{F_{n+1}}\right) = \phi = \frac{\sqrt{5} + 1}{2} \) is left as an exercise.)

We were allowed to group terms in the previous proofs, without worrying about finding a formula for the \(n \)th partial sum, because the terms were all positive.

Remember: If terms are not all positive, watch out!

\[-1 + 1 - 1 + 1 - 1 + \cdots = (-1 + 1) + (-1 + 1) + (-1 + 1) + \cdots \]

\[= 0 + 0 + 0 + \cdots \]

\[= 0 \]

\[-1 + 1 - 1 + 1 - 1 + \cdots = -1 + (1 - 1) + (1 - 1) + (1 - 1) + \cdots \]

\[= -1 + 0 + 0 + 0 + \cdots \]

\[= -1 \]

\[-1 + 1 - 1 + 1 - 1 + \cdots = 1 - 1 + 1 - 1 + \cdots \]

\[= 1 + 0 + 0 + 0 + \cdots \]

\[= 1 \]

Back to the harmonic series!

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \cdots \]

Here are a few of my favorite proofs that I don't typically show my students...

The Bernoulli Brothers Johann and Jacob

- Johann's proof was published by his brother Jacob in 1689.
- Jacob's proof, also from 1689, is not as well known as Johann's.
- Johann's proof is sometimes erroneously referred to as Jacob's proof. Or, it is sometimes referred to as "the Bernoulli proof."
Johann's proof:
First, note that \(\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \) is telescoping and converges to 1. Form the following sums:

\[
\begin{align*}
C &= \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \cdots = \frac{1}{2} \\
D &= \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \cdots = \frac{1}{6} \\
E &= \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \cdots = \frac{1}{12} \\
F &= \frac{1}{20} + \frac{1}{30} + \cdots = \frac{1}{20} \\
G &= \frac{1}{30} + \cdots = \frac{1}{30} \\
\end{align*}
\]

Since the series \(C + D + E + F + G + \cdots \) has only positive terms, it must either converge, or diverge to infinity. Assume that it converges.

Adding the first and second columns:

\[
C + D + E + F + G + \cdots = 1 + \frac{1}{2} + \frac{3}{6} + \frac{4}{20} + \frac{5}{30} + \cdots = 1 + 1 + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots
\]

The above contradiction shows that \(C + D + E + F + G + \cdots \), and therefore the harmonic series, must diverge.

Jacob's proof:
First, let \(j \) be a positive integer. Form the sums

\[
\sum_{n=1}^{j} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{j},
\]

\[
\sum_{n=j+1}^{\infty} \frac{1}{n} = \frac{1}{j+1} + \frac{1}{j+2} + \cdots
\]

Note that both sums have \(j \) terms, and that the second sum equals \((j^2 - j) \left(\frac{1}{j^2} \right) = 1 - \frac{1}{j} \).

Note also that

\[
\sum_{n=j+1}^{\infty} \frac{1}{n} > \sum_{n=j+1}^{\infty} \frac{1}{j^2}
\]

Adding \(j \) to both sides of the above inequality, we have:

\[
\sum_{n=1}^{j} \frac{1}{n} > 1 - \frac{1}{j}
\]

Now let's define the sequence \(a_i = 2, a_{i+1} = (a_i)^2 + 1 \).

(Continued)

Alternating Harmonic Series

\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots = \ln(2)
\]

- Converges by alternating series test
- Variety of proofs for showing its sum is \(\ln(2) \)

\[
f(x) = \frac{1}{x}
\]

Area = 1 - \((\text{area of white rectangle}) = 1 - \frac{1}{2} + \frac{1}{3} \)
A formal proof that the alternating harmonic converges to $\ln(2)$

Step 1: Let $y_n = H_n - \ln(n + 1)$, where $H_n = \sum_{k=1}^{n} \frac{1}{k}$.

Prove that $\{y_n\}$ converges.

Step 2: Note that $\lim_{n \to \infty} (H_n - \ln(n))$ is the same as $\lim_{n \to \infty} (H_n - \ln(n + 1))$. Call this number γ.

Step 3: Prove that $\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} = \ln(2)$

Step 1: Let $y_n = H_n - \ln(n + 1)$, where $H_n = \sum_{k=1}^{n} \frac{1}{k}$.

Prove that $\{y_n\}$ converges.

Proof:

From the picture, we see that

$H_n > \int_{1}^{n+1} \frac{1}{x} dx = \ln(n + 1)$

And therefore, $y_n = H_n - \ln(n + 1) > 0$

Also from the picture, note that

$\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} = \int_{1}^{n+1} \frac{1}{x} dx = \ln(n + 1)$

Adding 1 to both sides, we have that $H_n < 1 + \ln(n + 1)$, which means $y_n < 1$.

So $\{y_n\}$ is bounded. To show it is increasing, we'll prove $y_n - y_{n-1} > 0$.

$y_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} - \ln(n + 1)

y_{n-1} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-2} - \ln(n)

y_n - y_{n-1} = \frac{1}{n} - [\ln(n + 1) - \ln(n)]

We can show that $y_n - y_{n-1} > 0$ by comparing areas:

$\frac{1}{n} = \text{area of rectangle} > \int_{n}^{n+1} \frac{1}{x} dx = \ln(n + 1) - \ln(n)$

Therefore, $\{y_n\}$ is a bounded, increasing sequence. So it must converge to some number. Step 1 is concluded.
Step 2:
It isn’t difficult to prove, using methods similar to what I’ve already shown, that the sequence \((H_n - \ln(n)) \) also converges.

Since both \((H_n - \ln(n)) \) and \((H_n - \ln(n + 1)) \) converge, and the difference of their \(n \)th terms approaches 0 as \(n \) approaches \(\infty \), then they must have the same limit. Call this number \(\gamma \).

\[
\gamma = \lim_{n \to \infty} (H_n - \ln(n + 1)) = \lim_{n \to \infty} (H_n - \ln(n))
\]

Step 3: Prove that \(\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} = \ln(2) \)

Proof: Let \(S_{2n} \) be the sum of the first \(2n \) terms of the alternating harmonic.

\[
S_{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{2n} = \left(1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{2n}\right) - 2 \left(\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2n}\right)
\]

Note: \(S_{2n} = H_{2n} - H_n \)

\[
S_{2n} = \left[\left(\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{2n}\right) - \ln(2n)\right] - \left[\left(\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{n}\right) - \ln(n)\right] + \ln(2)
\]

Thus \(\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} = \lim_{n \to \infty} S_{2n} = \gamma - \gamma + \ln(2) = \ln(2) \).

To calculate \(H_n = \sum_{k=1}^{n} \frac{1}{k} \) with \(n = 100,000 \), I used three methods and my TI-84:

Using the sum command, the calculator took 14 minutes. (Ans: 12.09014613)

Using the integral \(\int_{1}^{n} \frac{1}{x^2} \, dx \), the calculator took 12 seconds. (Ans: 12.09014613)

Geometric, with first term \(a = 1 \) and common ratio \(r = x \):

\[
1 - x^n = 1 + x + x^2 + \cdots + x^{n-1}
\]

Integrate both sides:

\[
\int_{1}^{\infty} \frac{1 - x^n}{1 - x} \, dx = \int_{1}^{\infty} (1 + x + x^2 + \cdots + x^{n-1}) \, dx
\]

\[
[1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}]_1^\infty = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}
\]

With the approximation \(H_n = \ln(n) + 0.57721566 \), it was instantaneous. (12.090144112)

The green area sums to \(y = \lim_{n \to \infty} (H_n - \ln(n + 1)) \). (Wolfram-alpha)

The Euler-Mascheroni constant \(\gamma \) is approximately 0.57721566.

It is suspected to be irrational, but this has not yet been proven.

We can use \(S_{2n} = H_{2n} - H_n \) from our previous proof to prove that the harmonic series diverges.

Assume that the harmonic series converges. Then:

\[
0 = \lim_{n \to \infty} H_{2n} - \lim_{n \to \infty} H_n
\]

\[
\lim_{n \to \infty} H_{2n} = \lim_{n \to \infty} S_{2n} = \ln(2)
\]

By contradiction, the harmonic series diverges.

Telescoping Series

Example: \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots = 1 \)

Classic Proof:

\[
S_n = \sum_{k=1}^{n} \frac{1}{k(k+1)}
\]

\[
= \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)
\]

\[
= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{n} - \frac{1}{n+1}\right)
\]

\[
= 1 - \frac{1}{n+1}
\]

\[
\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} S_n = 1
\]
Ah, but here comes the problem! I put that last example on a test, and the inevitable happens:

\[
\left(1 - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \ldots
\]

\[
= \frac{1}{2}
\]

Let’s do that last summation correctly, using partial sums:

\[
S_n = \sum_{k=1}^{n} \left(\frac{k+2}{2k} - \frac{k+3}{2k+2}\right)
\]

\[
= \frac{2}{(n+1)(n+2)}
\]

\[
\lim_{n \to \infty} S_n = \frac{3}{2} - \frac{1}{2} = 1
\]

Problem: Take any geometric series, \(r \neq 1\), and turn it into a telescoping series.

Solution:

\[
S_n = a + ar + ar^2 + \ldots + ar^{n-1}
\]

\[
= a \left(\frac{1-r^n}{1-r}\right)
\]

In general, any geometric series, \(r \neq 1\), can be written as a telescoping series:

\[
\sum_{n=1}^{\infty} ar^{n-1} = \frac{a(1-r)}{1-r} = \frac{a}{1-r} \sum_{n=1}^{\infty} (r^n - r^{n+1})
\]
Selected References

D. D. Bonar and M. Khoury, Jr., Real Infinite Series, MAA, 2006

Donald "The Mathman" Cohen, Calculus By and For Young People (ages 7, yes 7 and up), Mathman biz

Roger B. Nelson, Proof Without Words: Exercises in Visual Thinking, MAA, 1993 (pg. 120, Mark Finsterlin)

Matt Hudelson, ”Proof Without Words: The Alternating Harmonic Series Sums to \(\ln(2) \)”, Mathematics Magazine, MAA 2010

Edward J. Barbeau, Mathematical Fallacies, Flaws, and Flimflam, MAA, 2000

‘Leonard Gillman; An Interview (Part 2)’, http://at.yorku.ca/t/o/p/c/49.htm, by Melvin Henriksen, 1998

The Harmonic Series Diverges Again and Again, by Steven Kifowit and Terra Stamps, and More Proofs of Divergence of the Harmonic Series, by Steven Kifowit, Prairie State College

Thanks for attending!

Kirby Bunas
Mathematics Department
Santa Rosa Junior College
kbunas@santarosa.edu