

Matthew T. Michaelson Glendale Community College (Arizona) Sheraton San Diego Hotel & Marina Nautilis 4

Transformations of Functions

Function	Transformations	
Linear	$y = a \left(cx - h \right) + k$	
Quadratic	$y = a (cx - h)^2 + k$	
Cubic	$y = a (cx - h)^3 + k$	
Radical	$y = a \sqrt[b]{cx - h} + k$	

Transformations of Functions

Function	Transformations
Absolute Value	y = a cx - h + k
Rational	$y = \frac{a}{cx - h} + k$
Exponential	$y = a \cdot b^{cx-h} + k$
Logarithmic	$y = a \log_b(cx - h) + k$

Trigsted

Summary of Transformation Techniques

Given a function y = f(x) and a constant c > 0:

- 1. The graph of y = f(x) + c is obtained by shifting the graph of y = f(x) vertically upward c units.
- 2. The graph of y = f(x) c is obtained by shifting the graph of y = f(x) vertically downward c units.
- 3. The graph of y = f(x + c) is obtained by shifting the graph of y = f(x) horizontally to the left c units.
- 4. The graph of y = f(x c) is obtained by shifting the graph of y = f(x) horizontally to the right *c* units.
- 5. The graph of y = -f(x) is obtained by reflecting the graph of y = f(x) about the x-axis.
- 6. The graph of y = f(-x) is obtained by reflecting the graph of y = f(x) about the y-axis.
- 7. Suppose *a* is a positive real number. The graph of y = af(x) is obtained by multiplying each *y*-coordinate of y = f(x) by *a*.

If a > 1, the graph of y = af(x) is a vertical stretch of the graph of y = f(x).

- If 0 < a < 1, the graph of y = af(x) is a vertical compression of the graph of y = f(x).
- 8. Suppose *a* is a positive real number. The graph of y = f(ax) is obtained by dividing each *x*-coordinate of y = f(x) by *a*.

If a > 1, the graph of y = f(ax) is a horizontal compression of the graph of y = f(x).

If 0 < a < 1, the graph of y = f(ax) is a horizontal stretch of the graph of y = f(x).

Rockswold

EQUATION	EFFECT ON GRAPH OF $y = f(x)$			
Let $c > 0$. y = cf(x)	If (x, y) lies on the graph of $y = f(x)$, then (x, cy) lies on the graph of $y = cf(x)$. The graph is vertically stretched if $c > 1$ and vertically shrunk if $0 < c < 1$.			
	Examples:	Vertically Stretched	Vertically Shrunk	
		$y = 2f(x)$ $y = f(x) \rightarrow x$	$y = f(x)$ $y = \frac{1}{2}f(x)$	
$\begin{array}{l} \text{Let } c > 0, \\ y = f(cx) \end{array}$	If (x, y) lies on the graph of $y = f(x)$, then $\left(\frac{x}{c}, y\right)$ lies on the graph of $y = f(cx)$. The graph is horizontally shrunk if $c > 1$ and horizontally stretched if $0 < c < 1$.			
	Examples:	Horizontally Shrunk	Horizontally Stretched	
		y = f(x)	$y = f(\frac{1}{2}x)$ $y = f(x)$ x	
y = -f(x) $y = f(-x)$	The graph of $y = f(x)$ is reflected across the x-axis.			
y = f(-x)	Examples:	Reflected Across x-Axis	Reflected Across y-Axis	
		y = f(x)	y = f(-x) $y = f(x)$	

onlinemathlearning.com

Rules for Transformation of Linear Functions					
Transformation	Function	Description			
Horizontal Shift	f(x + <i>h</i>)	Shift <mark>left</mark> <i>h</i> units			
	f(x - h)	Shift <mark>right</mark> <i>h</i> units			
Vertical Shift	f(x) + <i>k</i>	Shift <mark>up</mark> <i>k</i> units			
	f(x) - <i>k</i>	Shift down <i>k</i> units			
Reflection	-f(x)	Reflect across <mark>x-axis</mark>			
	f(x)	Reflect across y-axis			
Vertical Stretch/Compress	<i>a</i> f(x), <i>a</i> > 1	Stretch vertically by a factor of <i>a</i>			
	a f(x), 0 < a < 1	Compress vertically by a factor of a			
Horizontal Stretch/Compress	f(ax), a > 1	Compress horizontally by a factor of $\frac{1}{a}$			
	f(ax), 0 < a < 1	Stretch horizontally by a factor of $\frac{1}{a}$			

Only $2 \times 3 = 6$ things to remember!

Transformation	Verticality (y)	Horizontality (x)
Transformation	"outside" $f(x)$	"inside" $f(x)$
Shift	y = f(x) + c	y = f(x + c)
	y = f(x) - c	y = f(x - c)
Stretch or compress	y = af(x)	y = f(ax)
	$y = \frac{1}{a}f(x)$	$y = f\left(\frac{1}{a}x\right)$
Reflect	y = -f(x)	y = f(-x)

"Outside" vs "Inside"

- Transformations performed on the "outside" of the function affect the *y*-coordinates (or the *verticality*) of the graph. These transformations are done the way they appear.
- Transformations performed on the "inside" of the function affect the *x*-coordinates (or the *horizontality*) of the graph. These transformations are done **opposite** from the way they appear.

Example 1

Perform each transformation in Desmos.

a.
$$f(x-2)$$

- **b.** f(2x)
- **c.** -2f(x)
- **d.** f(x) + 3

High Speed Recreational Vehicle

Using the function in Example 1, perform the transformations in Desmos.

$$-2f(2x-2)+3$$

Perform each transformation in Desmos.

a.
$$f(x) = -\sqrt{-3x}$$

b.
$$g(x) = 2(x-3)^2 + 1$$

c.
$$h(x) = 3 + \frac{1}{x+1}$$

Final Thoughts

- Transformations of functions need to be taught to students in ways that engage them and make it easier for them to understand.
- Simplified "rules" for transformations of functions can be extended to trigonometric functions with appropriate tweaks to accommodate their periodic nature.
 - "Practice makes perfect permanent."