MAA PIC Math and the Best Jobs in the 21st Century

Michael Dorff, Brigham Young University
Suzanne Weekes, Worcester Polytechnic Institute

June 24, 2019
Best job of 2014? Mathematician

– from CareerCast.com, a job search website

“Mathematicians pull in a midlevel income of $101,360, and the field is expected to grow 23% in the next eight years.”
Best job of 2014? Mathematician

– from CareerCast.com, a job search website

“Mathematicians pull in a midlevel income of $101,360, and the field is expected to grow 23% in the next eight years.”

What are some non-academic career for mathematicians?
Career: Data analyst/Analytics consultant

- Google
- Nike
- Cleveland Cavaliers
- Youngstown Police Dept
Career: Operations researcher

- UPS
- Airlines
- Hospitals
- Military

Carol Meyers
Lawrence Livermore Labs

Eric Murphy
Pentagon
Career: Technology consultant

- Raytheon
- General Dynamics
- Lockheed Martin
- Boeing

Aaron Peterson
Raytheon
Career: Financial analyst

- Goldman Sachs
- RBS Global Banking
- Capital One
What the employers have said

They want math students, because of their
What the employers have said

They want math students, because of their problem-solving skills
What the employers have said

They want math students, because of their

- problem-solving skills
- ability to abstract
What the employers have said

They want math students, because of their

▷ problem-solving skills
▷ ability to abstract
▷ break complicated problems into solvable small pieces
What the employers have said

They want math students, because of their

► problem-solving skills
► ability to abstract
► break complicated problems into solvable small pieces
► ability to learn new things on their own
What the employers have said

They want math students, because of their

► problem-solving skills
► ability to abstract
► break complicated problems into solvable small pieces
► ability to learn new things on their own
► attention to detail
What the employers have said

They want math students, because of their

▸ problem-solving skills
▸ ability to abstract
▸ break complicated problems into solvable small pieces
▸ ability to learn new things on their own
▸ attention to detail
▸ think of problems in a different way
What the employers have said

They want math students, because of their

- problem-solving skills
- ability to abstract
- break complicated problems into solvable small pieces
- ability to learn new things on their own
- attention to detail
- think of problems in a different way
What the employers have said

They recommend that students should

▶ learn to code
▶ develop good communication skills
▶ do an undergraduate research project or a summer internship
▶ learn about another discipline
What the employers have said

They recommend that students should

- learn to code
What the employers have said

They recommend that students should

▶ learn to code
▶ develop good communication skills
What the employers have said

They recommend that students should

- learn to code
- develop good communication skills
- do an undergraduate research project or a summer internship
What the employers have said

They recommend that students should

- learn to code
- develop good communication skills
- do an undergraduate research project or a summer internship
- learn about another discipline
What the employers have said

They recommend that students should

- learn to code
- develop good communication skills
- do an undergraduate research project or a summer internship
- learn about another discipline
Career: Software engineer

- FAST Enterprises
- Google
- Epic
- MathWorks
- Palantir

Remi Fuhriman, Epic
Career: Medical scientist

- Bristol-Myers Squibb
- Pharsight Pharmaceutical
- Center for Disease Control

Helen Moore
Applied BioMath
Career: Cryptanalyst

Lauritz Petersen
NSA
Career: Actuary

Jared Collings
Regence
Career: Computer graphics imaging

- Pixar Animation Studios
- Disney
- Digital Domain
- Adobe

Tony DeRose
Pixar
Summary

▶ The world is becoming more math-oriented, and there are opportunities for people who understand math:
 ▶ Analytics consultant
 ▶ Technology consultant
 ▶ Software engineer
 ▶ Financial analyst
 ▶ Medical scientist
The world is becoming more math-oriented, and there are opportunities for people who understand math:

- Analytics consultant
- Technology consultant
- Software engineer
- Financial analyst
- Medical scientist

Students should prepare by:

- learning to code
- developing good communication skills
- doing an intensive research project or a summer internship
Sample problem:

Background: Youngstown, Ohio has seen a dramatic decline in its city population and a shift in the location of the population over the past forty years. However, the police department was still using a division of the city into police beats that was created decades ago. You are given crime data from the past year from the police department.
Sample problem:

Background: Youngstown, Ohio has seen a dramatic decline in its city population and a shift in the location of the population over the past forty years. However, the police department was still using a division of the city into police beats that was created decades ago. You are given crime data from the past year from the police department.

Problem: Propose a new model for more equitable divisions of the city into police beats.
Imagine a course based on solving such problems
Imagine a course based on solving such problems

A course that
Imagine a course based on solving such problems

A course that

► is based on an actual problem from industry
Imagine a course based on solving such problems

A course that

▶ is based on an actual problem from industry
▶ the problem can be solved by 1st and 2nd year undergraduates
Imagine a course based on solving such problems

A course that

▶ is based on an actual problem from industry
▶ the problem can be solved by 1st and 2nd year undergraduates
▶ students work in groups solving a problem from industry
Imagine a course based on solving such problems

A course that

▶ is based on an actual problem from industry
▶ the problem can be solved by 1st and 2nd year undergraduates
▶ students work in groups solving a problem from industry
▶ the instructor does little (or no) lecturing
Imagine a course based on solving such problems

A course that

- is based on an actual problem from industry
- the problem can be solved by 1st and 2nd year undergraduates
- students work in groups solving a problem from industry
- the instructor does little (or no) lecturing
- students interact with a consultant from industry
Imagine a course based on solving such problems

A course that

▶ is based on an actual problem from industry
▶ the problem can be solved by 1st and 2nd year undergraduates
▶ students work in groups solving a problem from industry
▶ the instructor does little (or no) lecturing
▶ students interact with a consultant from industry
▶ involves students improving their communication skills
Imagine a course based on solving such problems

A course that

▶ is based on an actual problem from industry
▶ the problem can be solved by 1st and 2nd year undergraduates
▶ students work in groups solving a problem from industry
▶ the instructor does little (or no) lecturing
▶ students interact with a consultant from industry
▶ involves students improving their communication skills
▶ prepares students for careers
Imagine a course based on solving such problems

A course that

- is based on an actual problem from industry
- the problem can be solved by 1st and 2nd year undergraduates
- students work in groups solving a problem from industry
- the instructor does little (or no) lecturing
- students interact with a consultant from industry
- involves students improving their communication skills
- prepares students for careers
That course is MAA PIC Math!
That course is MAA PIC Math!

PICMath

Preparation for industrial careers in mathematical sciences
That course is MAA PIC Math!

PIC Math prepares math students for industrial careers by offering a course that engages them in research problems from industry.

Preparation for industrial careers in mathematical sciences
That course is MAA PIC Math!

PIC Math prepares math students for industrial careers by offering a course that engages them in research problems from industry.

This is an MAA program funded by NSF and NSA.
That course is MAA PIC Math!

PIC Math prepares math students for industrial careers by offering a course that engages them in research problems from industry.

This is an MAA program funded by NSF and NSA.

Components:
- summer 3-day faculty training workshop
- spring semester course for students
- student conference
Results

Participation data (2014/15 − 2016/17)

▶ 107 faculty members
▶ 101 U.S. universities/colleges
▶ in 32 states and D.C.
▶ 14 PhD, 23 MS/MA, 63 BS/BA, 1 Associates degree
▶ 10 HSIs and 6 HBCUs
▶ over 1400 undergraduate students
▶ 40% female
▶ 21% underrepresented ethnic groups
▶ 147 papers co-authored by undergraduates
▶ over 150 conference presentations by undergraduates
▶ over 100 industrial partners have provided problems and consultants
Results

Participation data (2014/15–2016/17)

- 107 faculty members
Results

Participation data (2014/15–2016/17)

- 107 faculty members
- 101 U.S. universities/colleges
 - in 32 states and D.C.
 - 14 PhD, 23 MS/MA, 63 BS/BA, 1 Associates degree
 - 10 HSIs and 6 HBCUs
Results

Participation data (2014/15—2016/17)

- 107 faculty members
- 101 U.S. universities/colleges
 - in 32 states and D.C.
 - 14 PhD, 23 MS/MA, 63 BS/BA, 1 Associates degree
 - 10 HSI and 6 HBCUs
- over 1400 undergraduate students
 - 40% female
 - 21% underrepresented ethnic groups
Results

Participation data (2014/15—2016/17)

- 107 faculty members
- 101 U.S. universities/colleges
 - in 32 states and D.C.
 - 14 PhD, 23 MS/MA, 63 BS/BA, 1 Associates degree
 - 10 HSIs and 6 HBCUs
- over 1400 undergraduate students
 - 40% female
 - 21% underrepresented ethnic groups
- 147 papers co-authored by undergraduates
- over 150 conference presentations by undergraduates
Results

Participation data (2014/15–2016/17)

▶ 107 faculty members
▶ 101 U.S. universities/colleges
 ▶ in 32 states and D.C.
 ▶ 14 PhD, 23 MS/MA, 63 BS/BA, 1 Associates degree
 ▶ 10 HSIs and 6 HBCUs
▶ over 1400 undergraduate students
 ▶ 40% female
 ▶ 21% underrepresented ethnic groups
▶ 147 papers co-authored by undergraduates
▶ over 150 conference presentations by undergraduates
▶ over 100 industrial partners have provided problems and consultants
Student comments:

▶ Female student at SUNY Geneseo: “I gained so many valuable skills in problem solving and working with a team. This opportunity was truly a stepping-stone for my career in mathematics.”

▶ Female student at Virginia State Univ (HBCU): “The PIC math helped me get my first job. The experience of successfully working in groups, and problem solving were key components in my interview.”
Student comments:

▶ Female student at SUNY Geneseo: “I gained so many valuable skills in problem solving and working with a team. This opportunity was truly a stepping-stone for my career in mathematics.”
Student comments:

▶ Female student at SUNY Geneseo: “I gained so many valuable skills in problem solving and working with a team. This opportunity was truly a stepping-stone for my career in mathematics.”

▶ Female student at Virginia State Univ (HBCU): “The PIC math helped me get my first job. The experience of successfully working in groups, and problem solving were key components in my interview.”
Faculty comments:
Faculty comments:

▶ Elly Farnell, Kenyon College: “Students in my courses have now gained valuable experience in team-based research on open-ended problems that have an immediate impact in a real-world setting.”
Faculty comments:

▶ Elly Farnell, Kenyon College: “Students in my courses have now gained valuable experience in team-based research on open-ended problems that have an immediate impact in a real-world setting.”

▶ Tom Wakefield, Youngstown State Univ: “The students were so committed to the project and excited to work on a problem with practical implications.”
MAA PIC Math

Logistics:

- Class: 5-15 undergraduates
- Learning: Active learning (students learn by doing)
- Collaboration: Students work in groups
- Industry: Students solve problems from industry
- Resources: Course material provided
- Assessment: Students write a paper and give a talk
Logistics:

- 5-15 undergrad students in class
- Student learn by doing (active learning)
- Students work in groups
- Students solve problems from industry
- Course material provided
- Students write a paper and give a talk
Resources for teaching the course

- Syllabus and course schedule
- Written research problems from industry
- Videos of industry mathematicians explaining a problem
- Videos of professors explaining the solution to the problem
- Student papers solving the research problem
- Videos of students presenting their research
Sample problem 2:

Background: Kongregate is an online browser-based video game website. They are combating ratings fraud by players using fake accounts to influence the ratings of games substantially.
Sample problem 2:

Background: Kongregate is an online browser-based video game website. They are combating ratings fraud by players using fake accounts to influence the ratings of games substantially.

Problem: Using data provided by Kongregate, develop an algorithm to help determine whether a submitted account is real or fraudulent.
Sample problem 3:

Background: The Field Museum is the science museum in Chicago. They implemented a crowdsourcing project designed to classify a large sample of microscopic plants, and obtained hundreds of thousands of pieces of data. While most of the crowdsourced data were usable, some were not.
Sample problem 3:

Background: The Field Museum is the science museum in Chicago. They implemented a crowdsourcing project designed to classify a large sample of microscopic plants, and obtained hundreds of thousands of pieces of data. While most of the crowdsourced data were usable, some were not.

Problem: Come up with criteria for determining what data are usable and what data should be rejected.
Over 100 industry partners have provided problems and a consultant who helps the students.
Over 100 industry partners have provided problems and a consultant who helps the students. These partners include:
Over 100 industry partners have provided problems and a consultant who helps the students. These partners include:

- Field Museum of Chicago
- Coca Cola
- Habitat for Humanity
- Colorado Dept of Transportation
- Heart Artery and Vein Center of Fresno
- Los Alamos National Lab
- Greensboro NC Police Dept
- Massachusetts General Hospital
- City of Kansas City
- AIG Insurance
- National Security Technologies
- Applied Geographics
- Water Utility Group
- Sandia National Lab
3-day summer faculty workshop
3-day summer faculty workshop

Discussion topics:
3-day summer faculty workshop

Discussion topics:

► non-academic careers and internships
► types of problems that arise in industry
► how to help students develop skills valued in industry
► guidance on developing industry connections
► preparation for spring PIC Math course
► how to mentor students in research
Thank you!

Michael Dorff
mdorff@math.byu.edu

Suzanne Weekes
sweekes@wpi.edu

PIC Math is a program of the MAA, funded by NSF grants DMS–1345499 and DMS–1722275 and NSA