A recently published extensive study of *Varanus bengalensis* in the wild emphasizes its feeding strategy, which depends primarily upon insects. The strategies uncovered are considered representative of most monitor lizard species, since the majority feed primarily (though not exclusively) on insects. But, unlike most species, *V. bengalensis* occurs over a huge area (Java to Iran), which results in an enormously species-rich potential prey spectrum. This is reflected in the fact that over 400 prey species were recorded as being taken as food by this species. Of these, 75% are invertebrates, 25% are vertebrates; the former being represented mainly by insects (225 species). Of these, beetles comprise the greatest proportion of total daily prey weight. Of the many beetle families, two rank consistently highest, no matter where within the geographic range the data are obtained:

a) darkling beetles - Tenebrionidae, only 10 species recorded, but comprising a high proportion of the total weight consumed each day particularly in more xeric habitats, and

b) dung beetles - Scarabaeidae, 39 species recorded, comprising highest proportion of food weight/day/stomach within almost all habitats in which the monitors occur.

Not only are dung beetles most common in stomachs, but much of the more complex feeding behavior of this monitor centers on these beetles. These data suggest the Bengal monitor be considered a dung beetle specialist. In most areas, the daily activity pattern is often determined by the temporal and spatial distribution of dung locally. Efficient foraging for dung beetles also demands detailed knowledge of beetle densities in different ages of dung decomposition, for both larval and adult beetles are clearly more common in dung of certain age. Additionally, dung beetle density varies greatly in respect to the dung contributor species. Dung beetles are remarkably more common in bovine dung than in that of other source animals. Both chemical and physical cues are apparently used to make these and other important determinations in regard to the cost effectiveness of investigating any particular dung pat.

Detailed studies of other insectivorous lizards suggest that, while they may utilize a large number of prey species as food, they are often, like the Bengal monitor, dependent on some insect groups more than others. Some insect species may be eaten more during one season than another, or at different ontogenetic stages of the prey, or of the life of the predator.
These and many other data suggest that general, non-prey species definitive carnivory is probably rare in nature. In captivity many predators will probably accept a somewhat broader food spectrum than might be the case in their native home. Because of demonstrable differences in the nutritional composition of different species, different metamorphic stages, etc., one is led to doubt the justification of a casual acceptance of carnivorous, or even insectivorous in determining the kind of prey offered to captives in order to keep them well and reproductively capable. This may be even more important in omnivorous species, in which specific plants (or even specific parts of specific plants) are eaten in addition to specific animal species. Carnivory as a reptilian life style is probably as complex from behavioral and preferential points of comparison than is herbivory. The word carnivorous is probably too generalized to be more than casually important in nutritional decisions bearing on the health of captives, as we are sure that this is definitely the case regarding herbivorous reptiles.

REFERENCES