American Society of Horticultural Science

Extension Division
2022 Educational Materials

Interactive, Participatory Awards Program
Thank You to Our Judges

- Amol N. Nankar
- Carolyn Scagel
- Charlotte Glen
- Chris Watkins
- J. Pablo Morales-Payan
- Janel Ohletz
- Joseph Masabni
- Kaylee South
- Liz Maynard
- MengMeng Gu
- Mohammad Reza Malekzadeh
- Randy Nelson
- Rhoda Burrows
- Srinivasa Rao Mentreddy
- Tia Silvasy
Thank you to our ASHS Staff Support

Angie Lower
Thank you!
App
Book
Gary Bachman
Southern Gardening All Year Long
Cheryl R. Boyer, Lauri M. Baker, & Hikaru H. Peterson

Center for Rural Enterprise Engagement Insight Summit Workbook
Bulletin
Tina McIntyre, Rachel Gutner, Morgan Pinkerton, & Sandra Wilson

Plant This, Not That: A Guide to Avoiding Invasive Species in Florida
Megan Muehlbauer, Thomas Molnar, & John Capik

Choosing Plants for a Hazelnut Orchard in New Jersey
Column
Tripti Vashisth & Davie Kadyampakeni

Regular leaf nutrient analysis improves HLB-affected trees

Nitrogen management is critical for nutrient balances that affect the nutrient uptake and availability to trees. For example, high pH levels can reduce the availability of soil-applied micronutrients on a certain (Ca) and manganese (Mn) basis. This can result in nutrient deficiencies in citrus trees. Understanding these dynamics in nutrient uptake is critical and can only be achieved through regular analysis of leaf samples. The model provides a snapshot of the nutrient status in the tree, and management can be adjusted accordingly to ensure a healthy, productive tree.

Nutrient balance in a healthy tree is important for overall health and productivity. Nutrient imbalances can lead to nutritional deficiencies or toxicities, affecting the tree's growth, yield, and overall quality. Regular leaf analysis helps identify nutrient deficiencies and imbalances, allowing for timely adjustments to nutrient management practices.

By Tripti Vashisth and Davie Kadyampakeni

Regular leaf nutrient analysis improves HLB-affected trees

Nitrogen management is critical for nutrient balances that affect the nutrient uptake and availability to trees. The model provides a snapshot of the nutrient status in the tree, and management can be adjusted accordingly to ensure a healthy, productive tree.
Wendy Wilber
"Gardening" in the Florida Farm and Family Magazine

4 Florida Grasses to Add to Your Landscape
by Wendy Wilber
August 15, 2021
Imed Dami
Spring Frost Injury of Grapevines and Protection Methods
A Green Industry Guide to Plant Patents and Other Intellectual Property Rights

Amy Fulcher, Lauren Fessler, & Tammy Stackhouse

What is a plant patent? A plant patent is a form of intellectual property that provides the patentee with the exclusive right to sell, offer to sell, import, or make a patented plant. A plant patent is issued for a period of 17 years from the date of filing. Plant patents are issued for new and non-obvious plant varieties, which are considered to be distinct, new, and non-obvious if they are not commercially available before the filing date.

What should you know? A plant patent is a form of intellectual property that provides the patentee with the exclusive right to sell, offer to sell, import, or make a patented plant. A plant patent is issued for a period of 17 years from the date of filing. Plant patents are issued for new and non-obvious plant varieties, which are considered to be distinct, new, and non-obvious if they are not commercially available before the filing date.

Who can apply for a plant patent? Any person, including individuals, corporations, and nonprofit organizations, can apply for a plant patent. Plant patents are issued on a first-come, first-served basis, so it is important to file your application as soon as possible.

What are the requirements for a plant patent? To be eligible for a plant patent, the plant must be novel, non-obvious, and distinct. The plant must also be a new variety, meaning that it is a plant variety that has not been previously sold or offered for sale in the U.S. for at least two years. Additionally, the plant must be non-obvious, meaning that it is not predictable or obvious in light of the prior art. Finally, the plant must be distinct, meaning that it is different from other known plant varieties.

What are the benefits of a plant patent? Plant patents provide the patentee with exclusive rights to the patented plant, which can include the exclusive right to sell, offer to sell, import, or make the patented plant. These rights can provide the patentee with a competitive advantage in the marketplace, allowing them to charge premium prices for their patented plant varieties.

How long does a plant patent last? A plant patent is granted for a period of 17 years from the date of filing. During this time, the patentee has the exclusive right to sell, offer to sell, import, or make the patented plant. After the 17-year term, the plant patent expires and anyone can use the patented plant without paying royalties to the patentee.

What are the fees associated with a plant patent? There are several fees associated with a plant patent. These fees include a filing fee, a search fee, and a maintenance fee. The specific fees vary depending on the circumstances, but generally range from several hundred dollars to several thousand dollars.

What are the implications of a plant patent? Plant patents can have significant implications for the agricultural industry. They can encourage innovation and investment in new plant varieties, which can lead to increased crop yields, improved disease resistance, and other benefits. However, plant patents can also lead to higher prices for consumers, as companies may be able to charge higher prices for their patented plant varieties.

What is a utility patent? A utility patent is a form of intellectual property that provides the patentee with the exclusive right to make, use, or sell a patented invention for a period of 20 years from the date of filing. Utility patents are issued for new and non-obvious inventions, which are considered to be distinct, new, and non-obvious if they are not commercially available before the filing date.

What should you know? A utility patent is a form of intellectual property that provides the patentee with the exclusive right to make, use, or sell a patented invention for a period of 20 years from the date of filing. Utility patents are issued on a first-come, first-served basis, so it is important to file your application as soon as possible.

Who can apply for a utility patent? Any person, including individuals, corporations, and nonprofit organizations, can apply for a utility patent. Utility patents are issued on a first-come, first-served basis, so it is important to file your application as soon as possible.

What are the requirements for a utility patent? To be eligible for a utility patent, the invention must be novel, non-obvious, and distinct. The invention must also be a new and non-obvious improvement over the prior art. Finally, the invention must be useful, meaning that it has a practical application.

What are the benefits of a utility patent? Utility patents provide the patentee with exclusive rights to the patented invention, which can include the exclusive right to make, use, or sell the patented invention. These rights can provide the patentee with a competitive advantage in the marketplace, allowing them to charge premium prices for their patented inventions.

How long does a utility patent last? A utility patent is granted for a period of 20 years from the date of filing. During this time, the patentee has the exclusive right to make, use, or sell the patented invention. After the 20-year term, the utility patent expires and anyone can use the patented invention without paying royalties to the patentee.

What are the fees associated with a utility patent? There are several fees associated with a utility patent. These fees include a filing fee, a search fee, and a maintenance fee. The specific fees vary depending on the circumstances, but generally range from several hundred dollars to several thousand dollars.

What are the implications of a utility patent? Utility patents can have significant implications for the technology industry. They can encourage innovation and investment in new technologies, which can lead to increased productivity, improved efficiency, and other benefits. However, utility patents can also lead to higher prices for consumers, as companies may be able to charge higher prices for their patented technologies.

How do you obtain a utility patent? To obtain a utility patent, you must file a patent application with the U.S. Patent and Trademark Office. The application must include a detailed description of the invention, including the way it works, how it is made, and how it is used. The application must also include drawings or other visual representations of the invention, as appropriate.

What is the process for obtaining a utility patent? The process for obtaining a utility patent involves several steps. First, you must file a patent application with the U.S. Patent and Trademark Office. The application must include a detailed description of the invention, including the way it works, how it is made, and how it is used. The application must also include drawings or other visual representations of the invention, as appropriate.

What happens after the utility patent is granted? After the utility patent is granted, the patentee has the exclusive right to make, use, or sell the patented invention for a period of 20 years from the date of filing. During this time, the patentee can use the patent to prevent others from making, using, or selling the patented invention without authorization. After the 20-year term, the utility patent expires and anyone can use the patented invention without paying royalties to the patentee.

What is the difference between a utility patent and a plant patent? The main difference between a utility patent and a plant patent is the subject matter. A utility patent is granted for a new and non-obvious invention, while a plant patent is granted for a new and non-obvious plant variety. Additionally, utility patents are granted for a period of 20 years from the date of filing, while plant patents are granted for a period of 17 years from the date of filing.
Japanese Persimmon Cultivars in Florida (Spanish translation: Cultivares de Caqui Japonés en Florida)

Ali Sarkhosh, Peter C. Andersen, & Dustin M. Huff

Japanese Persimmon Cultivars in Florida

History
Japanese persimmons, Diospyros kaki, originated in China and were first grown in Florida in the 1940s. At that time, there were commercial plantings of non-stripping types, but small-scale, O.F. 119, 110, and 111 growers began planting in the late 1940s, with a small area being grown the first year. However, by the early 1970s, there were over 170,000 acres of persimmon orchards in Florida. growers began to realize that the virus affecting this area was killed by the freeze of 1979. The freeze allowed for the propagation of non-stripping varieties, which were then planted in Florida. As of 2023, there are over 180,000 acres of persimmon orchards in Florida. The fruit is harvested from late October to early November.

Descriptions of Some Nonstripping Cultivars

Early-Season Cultivars

These cultivars are harvested in late September through mid-October.

Mid-Season Cultivars

These cultivars are harvested in late October through early November.

Marketing and Use

Florida persimmons are known for their unique flavor and texture. They are primarily used fresh, as they are not easily bottled or canned. They are also used in desserts such as pies, cakes, and jams. In addition, persimmon juice can be made by juicing the fruit and then freezing it to prevent spoilage.

Sugars

Persimmons are a low-sugar fruit, containing about 5% to 10% sugar by weight. This makes them a popular option for those looking to reduce their sugar intake. They are also a good source of dietary fiber, with about 2 grams per medium-sized fruit. This helps to promote healthy digestion and can help with weight management.

Texture

The skin of Florida persimmons is smooth and thin, allowing the fruit's meat to be easily removed. The fruit is firm and crunchy, with a slight crunch when bitten into. The taste is sweet and tangy, with a mild astringency that is characteristic of the persimmon fruit. This flavor profile makes them a versatile ingredient in various dishes, from desserts to savory dishes.
Agricultural Water & Microbial Water Quality Profile
Leaflet
Raymond Cloyd

Resistence Management of Arthropod Pests of Greenhouse Production Systems

Pesticides (Insecticides and Miticides)

Pesticides (insecticides and miticides) applications have been used to manage arthropod pests in greenhouse production systems for decades. In general, the arthropod pests have not changed, but their pest pressure has increased due to increased regulations governing pesticide use.

Before the 1980s, greenhouse growers might expect to have access to two or three new active ingredients each year for greenhouse use. A number of pesticides were available, which were capable of killing nearly all arthropod pests that required effective crop protection. These broad-spectrum pesticides were used effectively against a wide range of arthropod pests, but they could also apply less frequently because of their long residual activity or persistence. Examples include aldicarb (Tranex), imidacloprid (Octane), nemafox (Lahaino), and tetrachlorvinphos (Deltamethrin). With these pesticide applications, there was less opportunity for arthropod pests to pass genetic traits to their offspring that might confer resistance.

Most broad-spectrum pesticides have been discontinued and are no longer available for use in greenhouse production systems following the passage of new pesticide laws and regulations. Despite major concerns regarding toxicity to humans, wildlife (Dinichlofuran), metallicdehyde (Methyldichloroacetic acid) and several of the older broad-spectrum pesticides are still widely used in greenhouse production systems.

There has been an increase in the cost and time to develop and register a new active ingredient, which is about $100,000,000, with a development time of 17 to 18 years. As a result, fewer new active ingredients are being approved for use in greenhouse production systems. The new pesticides that are being registered as new entities, meeting the criteria for new active ingredients of the broad-spectrum pesticides that were available previously. Consequently, broad-spectrum pesticides, the newer selective pesticides

The role of prey species on the number of arthropod pests that develop resistance to pesticides, is unknown. Pesticides, therefore, should not be used in excess.

The basic premise is that the number of arthropod pests that develop resistance to pesticides is reduced, the slower the rate of pesticide application.

Rotation Programs

Applying pesticides with the same mode of action repeatedly increases selection pressure on arthropod pest populations, which can increase the development of resistance. Therefore, alternating pesticides with different modes of action will preserve the effectiveness of pesticides and increase their longevity. The means by which a compound’s effectiveness against a target arthropod pest is related to the mode of action. Pesticides applied to manage arthropod pest populations should be used in rotation with different families of pesticides, for example, to control specific pest species or pest populations. For example, certain pests may be controlled with organophosphates, while others may be controlled with carbamates or pyrethroids.

The Insecticide Resistance Action Committee (IRAC) maintains a list of chemical classes, which are grouped by mode of action. The resistance and resistance management guidelines for each chemical group can be found at: resistanceaction.org, along with information that will help greenhouse producers develop appropriate rotation programs to manage insect and mite populations during the growing season.

Raymond Cloyd
Herbicidal Entomology and Pest Prevention Specialist

Kansas State University Agricultural Experiment Station and Cooperative Extension Service

Leaflet
E. Vanessa Vassilaros, Yvette Goodiel, Gene McAvoy, & Laurie Hurner

Agricultural protection during Coronavirus pandemic

AGRICULTURAL PROTECTION DURING CORONAVIRUS PANDEMIC

By E. Vanessa Campoverde. Edited by Y. Goodiel, G. McAvoy & L. Hurner
University of Florida/IFAS Extension Educators

Here are some guidelines for safeguarding agricultural workers during the Coronavirus (COVID-19) pandemic

TALK ABOUT THE VIRUS

Discuss with employees common symptoms and ways to prevent spread of COVID-19 virus
Encourage employees to ask questions
Post information in common areas employees frequent (Example: break rooms, bathrooms)

Symptoms:
- Fever/Cough/Difficulty breathing
- Symptoms can vary. Infections can go from being asymptomatic in one person (no symptoms shown) or extreme in another, even causing death.

VIRUS MOVEMENT IN FARMS/NURSERIES

The incubation time varies from 2 to 14 days.

Virus spreads mainly from person-to-person:
- Between people who are in close contact or
- When an infected person coughs, sneezes, or talks

A person may also get the virus by touching a contaminated surface or object and then touching their own nose, mouth or eyes.

BEFTER SAFE THAN SORRY

Coronavirus (COVID-19) DOESN'T have a vaccine
If possible, allow some employees to work remotely (accountant, secretary)

In the case of essential farmworkers (Example: scouts or growers):
- Promote social distancing practices: (6 feet or 2 meters) between individuals
- Encourage employees to cover coughs/sneezes
- Tell employees to stay home if they are sick
- Postpone work meetings until further notice.

HAND WASHING STATION

- Set up routine cleaning and disinfection at work
- Establish hand-wash station(s) in each operation
- Promote frequent hand washing with soap and water for at least 20 seconds.

SOURCES:
A Longer Marketing Life for Blackberry and Raspberry Fruit

Jayesh B. Samtani & Mosbah M. Kushad

Minimizing Water Loss and Fruit Rottenness
- Fruit quality, the temperature within harvested fruit, and the environmental condition that berrys are stored in have a direct effect on how long they last in storage. Cooling, softening, and sorting of berries is medically important.
- Harvest Repeatedly. Depending on the time period of the season, picking frequency could vary from one to five times per week.
- Begin picking fruit early in the day, second wave, when the day is hot. Lower fruit heat causes a lower internal fruit temperature and, therefore, requires lower cooling rates of the fruit.

Avoiding Damage to Berries
- Minimizing Physical Damage
- To maintain physical damage to berries:
 1. Avoid digging soil beneath the trees, particularly for long damages. These changes result in more physical damage to the berries.
 2. Keep the ground between the rows of trees free of weeds and debris. These changes reduce the amount of physical damage to the berries.
 3. Harvest berries at the earliest possible stage of maturity for the anthocyanin content to be maintained.

Virginia Cooperative Extension
Virginia Tech. Virginia State University
Publication 43571

Learn more and take the first step to a longer, more profitable market season for blackberry and raspberry fruit.

Learn more and take the first step to a longer, more profitable market season for blackberry and raspberry fruit.

Learn more and take the first step to a longer, more profitable market season for blackberry and raspberry fruit.

Learn more and take the first step to a longer, more profitable market season for blackberry and raspberry fruit.

Learn more and take the first step to a longer, more profitable market season for blackberry and raspberry fruit.

Learn more and take the first step to a longer, more profitable market season for blackberry and raspberry fruit.
Nutrition and Irrigation Management for Florida HLB-Affected Trees

Tripti Vashisth, Davie Kadyampakeni, & Jamie Burrow

Nutrition and HLB-Affected Tree Facts
- It is highly advisable once a tree becomes Candidatus Liberibacter (CLas) positive that it can become free of CLas.
- Good nutrition and irrigation programs can improve the productivity of HLB-affected trees to improve tree health, potentially increasing citrus production profitable under HLB-affected conditions.
- When considering rejuvenating HLB-affected trees with intensive nutrition and irrigation programs, tree age and disease severity should be considered.
- No-one fertilizer program can be suitable for all growers.

Why Different Management Programs
- Each grower situation due to a number of factors: climate or in combination, such as:
 - Soil type
 - Soil pH
 - Location
 - Irrigation water quality
 - Organic matter in soil
 - Variety and vigor
- Nutrition and irrigation programs should be customized to address these unique situations.

Goal
- To improve production of HLB-affected trees, nutrition, irrigation, and soil pH should be considered together, because each can influence the efficacy of the others in overcoming the effects of HLB on tree performance.

Soil and Irrigation Water pH
- Soil pH determines the availability and bioavailability of nutrients essential for citrus growth and yield.
- Low soil pH exacerbates nutrient leaching problems.
- High soil pH makes micronutrients unavailable.
- For optimal performance, base soil pH in the 6.0-6.5 range.
- Management of soil pH and nutrients should include annual soil and water quality testing.
- Irrigation water salinity, elemental sulfur application, or use of acidifying fertilizers are recommended to reduce soil pH into the acceptable range.
- Too low or too high soil pH can cause additional stress on the root systems.
- Frequent soil testing should be an indispensable component of irrigation and nutrient management.

Irrigation Program
- HLB-affected trees have a compromised, stabilized root system; therefore, their water uptake potential is limited.
- The canopy of HLB-affected trees is often small; therefore, the water requirement is less than that of a full-cane healthy tree.
- Increase frequency of irrigation applications and decrease duration.
- Because a small root system can only take up a small amount of water at a time, excess water is likely to wash out of the root zone.
- Frequent irrigation scheduling helps ensure that the tree is not undergoing any water deficit during stress.

Nutrition Program
- The goal of a nutrition program should be continuous availability of all nutrients to the tree year-round.
- HLB-affected trees have a small root system, resulting in limited water and nutrient uptake; therefore, making nutrients continuously available to the tree is beneficial.
- A nutrition program should be a combination of soil- and foliar-applied nutrients. However, do not rely solely on foliar application for any nutrient.
- Soil-applied nutrients are taken up by the plant with the water system, therefore, irrigation scheduling is important.
- The placement of fertilizer (right place) is critical; it should be placed in the wetted zone at the uptake of nutrients occurs in solution.
- Frequent leaf nutrient analysis is essential for an effective nutrient program because it helps growers assess if the fertilizer program is meeting tree requirements.
- The focus of the nutrition program should be on leaf nutrient concentrations and not on the rate of nutrient applied.
- Fertilizer programs should have all nutrients in the right balance.
- Optimal soil pH is critical for making nutrients available to the tree; the soil pH needs to be in the right range at the time of nutrient application.
- If soil pH adjustments are made periodically, the fertilizer application should be coordinated to occur after the pH adjustment.

The University of Florida and the Institute of Food and Agricultural Sciences do not discriminate on the basis of race, color, sex, disability, age, religion, national origin, marital status,冤or sexual orientation and aging in employment and education activities. For more information, visit UF/IFAS extensions, office: 3106 S. Archer Road, P.O. Box 1108, Gainesville, FL 32604; UF/IFAS Extension office: 1000 SW Archer Road, P.O. Box 1108, Gainesville, FL 32604; UF Institute of Food and Agricultural Sciences, office: 3106 S. Archer Road, P.O. Box 1108, Gainesville, FL 32604.
Shengrui Yao
Fruit Tree Freeze and Frost Damage and Its Management

Figure 1. Winter damage to plants freeze killed, healthy, and frost-damaged flower buds (middle plants), and healthy and frosted flower buds (right plant). Green circles indicate healthy buds, red circles indicate frost damaged. (Photo by Shengrui Yao, NMSE)

Figure 2. Cherry tree buds and flower damage.健康（健康）, damaged (damaged) flowers and buds (b), and healthy and damaged buds (C and D) of different伤害程度。绿色圈表示健康的花蕾，红色圈表示受伤的花蕾。（Photo by Shengrui Yao, NMSE）

Figure 3. Peach tree flower damage. Healthy flowers and buds are left and damaged buds are right.（健康）, 健康的花和花蕾，受伤的花和花蕾。（Photo by Shengrui Yao, NMSE）

Critical Temperatures for Frost Damage
The trees develop clonal vigor, precocious bloom, and bud in Figure 1 can be used to guide frost protection. Frost damages occur in New Mexico State University (NMSE) experiments. (Figure 1, 2, and 3)
Multimedia
Ian Ford-Terry
YHEP Conservation Video Series, EP 3: Monarch Container Gardens
Ben Phillips, Dan Egel, Laura Ingwell, Elizabeth Maynard, Stephen Meyers, Ajay Nair, Nathan Johanning, Megan Kennelly, Touria Eaton, Marissa Schuh, Jim Jasinski, & Angeline Tran

Midwest Vegetable Production Guide for Commercial Growers 2022
Crawford Entertainment, Florida Department of Environmental Protection, & UF/IFAS Extension/Florida-Friendly Landscaping™ Program

Flip My Florida Yard Television Show
Newsletter
The Neighborhood Gardener - May

Firespots at NOAA’s Climatic Prediction Center will release their predictions for the 2022 hurricane season soon. While we wait, our focus is stay-in-hurricane awareness. One thing you can do to protect your family and home is to hurricane-proof your landscape. This article will help you get started.

Hurricane Landscaping

Planting Okra

A staple of Southern cuisine, okra comes to the Americas from Western Africa. Florida gardeners appreciate its extreme heat tolerance and long growing season. And for anyone noting that the okra bloom looks like a nodding tower, exuberant detective work. Okra is a member of the mallow family. Learn more about okra at okrafood.com and how to grow the Florida-friendly edible.

Common Landscape Pitfalls: Tree Root Problems

Root problems are difficult to detect, often hidden below ground. This article advises a few common root problems: depth of planting, girdling roots, traffic damage, and clashes with hardscapes. Some of these issues can be addressed by homeowners themselves but when in doubt, call a certified arborist in to assess the safety of your tree.

Wendy’s Wanderings

This year the spring rains have awakened the berries in my yard, namely in rose plants. The environmental impacts of invasive plants are huge, as they can permanently alter native ecosystems and reduce Florida’s biodiversity. As the problem has grown, the landscape and horticulture industries have become more concerned. Luckily for us, a team of UF/IFAS researchers and extension agents have put together new invasive species terminology that will help to reduce confusion, misuse, and over-representation. Read on for helpful terminology and the identity of Wendy’s “teddy plants.”
Podcast
Tina McIntyre

Better Lawns & Gardens Podcast, Featuring Tina McIntyre

February Landscaping
UF/IFAS Extension/Florida-Friendly Landscaping™ Program, Florida Department of Environmental Protection, & WUFT-FM

UF/IFAS "Florida-Friendly Landscaping™ in a Minute" Radio Spots
Primary Visual
Edibles to Plant Infographic Series
Yvette Goodiel, Carol Roberts, Carlita Fiester-Nunez, Jennifer Taylor, Linda Seals, & Mandy Baily

Strengthening the Food System through "Good Food Connections"
Yvette Goodiel

Hands-on Irrigation Training for Master Gardener Volunteers

26 million people
Projected population of Florida in 2040

85 gallons per day
Florida’s domestic per capita water use

SFWMD 3-Day-A-Week Watering
Unincorporated Martin County, Indiantown, Town of Jupiter Island, and Ocean Breeze Park

No watering from 10am to 4pm

Properties with no address number follow Even schedule
Introduction to Ecology and Ecosystem Concepts

What Do We Mean by Native?

Similar Soil & Climate
Video
Patrick Kelly, Michelle Sagers, & Dennis Hinkamp

Tapping Trees for Syrup in the West
Amanda McWhirt, Aaron Cato, Lizzy Herrera, Sara Cato, Guido Schnabel, Mark Hoffman, Jayesh Samtani, Phil Brannan, Hannah Burrack, Gina Fernandez, Edgar Vinson, Rebecca A. Melanson, Bill Cline, & Mary Helen Ferguson

2021 Southeastern Strawberry School
Tripti Vashisth & Michael Rogers

Use of Gibberellic Acid Treatment to Improve Health and Yield of HLB-affected Trees
Website
Megan Muehlbauer

New Jersey Weekly Apple Maturity Review
UF/IFAS Extension/Florida-Friendly Landscaping™ Program,
UF/IFAS Extension/Communication Services, &
Florida Department of Environmental Protection

UF/IFAS Florida-Friendly Landscaping™ Program Website
Opportunities for Next Year

► Apply for Awards
► Serve as a Judge
► Check out the ASHS website
► Contact Ajay Nair
 nairajay@iastate.edu