The information contained is deemed accurate and appropriate at the time of its publication. The information in this report is provided by member firms and is represented by them to be current and accurate. BCI provides this information as a service to its members.

While BCI and SmithBucklin Corporation strive for accuracy in this report, neither makes any promises or warranties regarding the accuracy or usefulness of the information, and expressly disclaims any liability related to the use or reliability of information contained in the report. BCI, SmithBucklin Corporation, its officers, directors, employees and agents and its member firms cannot be held liable for the accuracy of this data.

Copyright 2017. All rights reserved.

(Reformatted Version)
TABLE OF CONTENTS

I. INTRODUCTION ... 3

II. METHODOLOGY ... 3
 A. Total Pounds of Lead Recycled from Batteries
 B. Total Pounds of Battery Lead Available for Recycling
 1. Battery Shipments
 2. Battery Imports and Exports
 3. Vehicle/Product Imports and Exports
 4. Scrap Lead and Used Battery Imports and Exports
 5. Units Recycled
 6. Notes

III. RECYCLING RATE WORKSHEET ... 5
 A. Recycling Rate
 B. Footnotes
I. INTRODUCTION

The National Recycling Rate Study, commissioned by Battery Council International (BCI), is designed to calculate the recycling rate of lead available from lead batteries in the United States. The first study was conducted in 1990. This most recent study completed finds the recycling rate for the years 2012 – 2016 to be 99.3% with a standard deviation of ±0.2%.

Part II of this report includes a review of the methodology used to determine the domestic recycling rate for battery lead during the years 2012 – 2016. Part III contains the data from which the recycling rate was calculated along with footnotes listing sources from which the data was obtained.

II. METHODOLOGY

The National Recycling Rate Study is conducted by SmithBucklin Statistics Group, Chicago, Illinois. The national recycling rate (R) was calculated by dividing the total pounds of battery lead recycled (LR) by the total pounds of battery lead available for recycling (LA) in the United States. The calculation is as follows:

\[R = \frac{(LR/LA) \times 100.} \]

A. Total Pounds of Lead Recycled from Batteries

To determine the total pounds of lead recycled from batteries, questionnaires were sent to all U.S. secondary lead recyclers. The data gathered from the questionnaires indicates the total pounds of lead recycled from batteries at U.S. recyclers. This total includes lead from whole batteries and lead from battery scrap.

All starting, lighting and ignition (SLI), industrial batteries (motive power and stationary), and small sealed lead batteries are included in this analysis. However, since the secondary lead recyclers record the receipt of batteries by weight rather than by type, it is impossible to determine the recycling rate for each category of battery.

B. Total Pounds of Battery Lead Available for Recycling

When calculating the total pounds of lead available for recycling, the following data was included in the equation:

1. New battery shipments (including new battery imports shipped)
2. New battery exports
3. Imports and exports of vehicles/products containing a battery
4. Imports and exports of scrap lead and used batteries

1. Battery Shipments

New battery shipment data, including domestic and export, for SLI batteries was obtained from BCI's statistical database. Imported batteries that are shipped to U.S. destinations are reported to BCI and classified as a shipment. Since the SLI shipment data is in units, an average lead weight was applied to each battery category to determine the total pounds of lead available for recycling from that category.

To determine the amount of lead available for recycling from industrial batteries, BCI surveys industrial battery manufacturers on the amount of lead used in the production of motive power batteries and stationary batteries shipped during the relevant years.

In addition, average battery life must be taken into account when identifying the number of batteries available for recycling. For the purpose of this study, a battery becomes available at the expiration of its average operating life. The batteries included in the analysis, and their average operating lives, are:

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Average Operating Life (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car & Light Truck</td>
<td>4</td>
</tr>
<tr>
<td>Truck & Heavy Duty Truck</td>
<td>3</td>
</tr>
<tr>
<td>Tractor</td>
<td>3</td>
</tr>
<tr>
<td>Marine & RV</td>
<td>3</td>
</tr>
<tr>
<td>General Utility (Wheelchairs, Small Lifts, Autonomous Vaccums, etc.)</td>
<td>2</td>
</tr>
<tr>
<td>Golf Car & Floor Scrubber</td>
<td>3</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>2</td>
</tr>
<tr>
<td>Aircraft</td>
<td>2</td>
</tr>
<tr>
<td>Military</td>
<td>6</td>
</tr>
<tr>
<td>Miscellaneous & Others</td>
<td>3</td>
</tr>
<tr>
<td>Motive Power</td>
<td>6</td>
</tr>
<tr>
<td>Stationary</td>
<td>10</td>
</tr>
<tr>
<td>Small Sealed Lead (SSL)</td>
<td>5</td>
</tr>
</tbody>
</table>

1/ BCI is a not-for-profit trade association whose members are engaged in the production of lead storage batteries for automotive, marine, industrial, stationary, specialty, commercial and consumer uses. BCI's members also include entities engaged in the reclamation or recycling of used lead batteries.
2/ Copies of previous National Recycling Rate Study reports can be obtained from BCI, 330 North Wabash Avenue, Chicago, Illinois 60611, email: bcistats@batterycouncil.org.
3/ When a recycler receives a truckload of batteries, it weighs the truck with and without the batteries to determine the net weight of the shipment. After determining the types of batteries received, the recycler multiplies the weight of the shipment by a pre-determined factor to identify the amount of battery lead received for recycling. These pre-determined factors are adjusted annually.
4/ BCI collects data regarding shipments of SLI and industrial batteries on a monthly basis from its members. BCI’s database includes SLI battery shipment figures back to 1937.
5/ Including specialty batteries which are used in such applications as trolley cars, etc.
2. Battery Imports and Exports
As mentioned earlier, imported SLI batteries that are shipped to U.S. destinations are classified as a shipment and reported to BCI monthly. However, small sealed lead (SSL) battery shipments are not reported to BCI. Since virtually all SSL batteries are imported, those numbers are obtained, along with other data on imports and exports of new batteries, from the Department of Commerce.

3. Vehicle/Product Imports and Exports
Data was collected on the imports and exports of vehicles known to contain batteries when shipped into or out of the United States. The imports and exports of passenger cars, trucks, buses, motorcycles were obtained from the Department of Commerce.

Based on consultation with industry experts, it is estimated that in addition to the total number of SSL batteries imported into the United States, and reported in Department of Commerce data, an additional 34% of that volume of SSLs comes into the United States within products. It is also estimated that about 2% of the imported SSL batteries are placed into products and exported back out of the United States. Those product imports and exports have been included in the equation.

All data was adjusted for each battery category's average life and assigned an average lead weight.

4. Scrap Lead and Used Battery Imports and Exports
Imports and exports of lead waste and scrap and used batteries were obtained from the Department of Commerce.

Lead Waste and Scrap:
Data reported by gross weight in the scrap lead category was multiplied by 90% to reflect the amount of battery lead believed typically to be represented by the category.6

Used Batteries:
For the purpose of this analysis, the number of used batteries was multiplied by the average lead weight of a passenger car or light commercial battery7 during the years the batteries were assumed to be produced.

5. Units Recycled
The units recycled based on a recycling rate of 99.3% is as follows:

<table>
<thead>
<tr>
<th>Category</th>
<th>Units Recycled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car & Light Truck</td>
<td>416,089,008</td>
</tr>
<tr>
<td>Truck & Heavy Duty Truck</td>
<td>26,246,724</td>
</tr>
<tr>
<td>Tractor</td>
<td>4,308,313</td>
</tr>
<tr>
<td>Marine & RV</td>
<td>47,715,291</td>
</tr>
<tr>
<td>General Utility (Wheelchairs, Small Lifts, Autonomous Vaccums, etc.)</td>
<td>14,519,712</td>
</tr>
<tr>
<td>Golf Car & Floor Scrubber</td>
<td>56,375,752</td>
</tr>
<tr>
<td>Motorcycle, Aircraft, Military, & all other</td>
<td>23,533,306</td>
</tr>
<tr>
<td>Stationary Small Sealed Lead (SSL)</td>
<td>24,144,761</td>
</tr>
</tbody>
</table>

6. Notes
Average Lead Weight for Automotive Batteries
Major battery manufacturers are surveyed annually to identify the weight of lead contained in the various automotive battery categories produced each year. This data is used to estimate the total pounds of battery lead available for recycling during each year of the study.

Average Battery Life and Recycling Rate
As mentioned earlier, average battery life is taken into account when identifying the number of batteries available for recycling in a given year. However, these averages are estimates and some batteries may not enter the recycling stream during the estimated year (i.e., some after, some before). Thus, aggregating the data over a five-year period provides a more accurate picture of battery recycling activity in the U.S.

7/ The average lead weight for a passenger car and light commercial battery was calculated at 22.2 pounds for the 2012 – 2016 recycling rate.
III. RECYCLING RATE WORKSHEET

The following pages contain the worksheet from which the recycling rate for the years 2012 – 2016 was calculated and footnotes listing sources from which relevant data were obtained.

Stationary SSLA ≤ 25Ah was previously included in the Total Automotive.

A. BCI RECYCLING RATE: 2012 – 2016

<table>
<thead>
<tr>
<th>AVERAGE BATTERY LIFE</th>
<th>YEAR OF MFR.</th>
<th>BATTERY TYPE AUTOMOTIVE:</th>
<th>BATTERY SHIPMENTS (units)</th>
<th>BATTERY EXPORTS (units)</th>
<th>BATTERY IMPORTS (units)</th>
<th>VEHICLE/PRODUCT IMPORTS (units)</th>
<th>VEHICLE/PRODUCT EXPORTS (units)</th>
<th>BATTERIES CONSUMED DOMESTICALLY (units)</th>
<th>AVERAGE LEAD WEIGHT (lbs)</th>
<th>LEAD IN BATTERIES (lbs) CONSUMED DOMESTICALLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>‘08 – ’12</td>
<td>Passenger Car & Light Truck</td>
<td>355,620,063</td>
<td>18,932,727</td>
<td>36,424,730</td>
<td>10,916,970</td>
<td>362,195,096</td>
<td>22.3</td>
<td>8,084,343,486</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>‘09 – ’13</td>
<td>Truck & Heavy Duty Truck</td>
<td>54,590,248</td>
<td>38,035,583</td>
<td>2,339,034</td>
<td>1,793,379</td>
<td>17,100,320</td>
<td>29.8</td>
<td>509,957,069</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>’09 – ’13</td>
<td>Tractor</td>
<td>2,240,724</td>
<td>32,232,763</td>
<td>33,163,407</td>
<td></td>
<td></td>
<td>28.8</td>
<td>927,077,600</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>’10 – ’14</td>
<td>General Utility (Wheelchairs, Small Lifts, Autonomous Vaccums, etc.)</td>
<td>33,163,407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.5</td>
<td>282,108,723</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>’08 – ’12</td>
<td>Golf Car & Floor Scrubber</td>
<td>27,374,833</td>
<td></td>
<td></td>
<td>2,489,891</td>
<td>618,110</td>
<td>4.8</td>
<td>1,095,344,838</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>’10 – ’14</td>
<td>Motorcycle</td>
<td>*****</td>
<td>2,489,891</td>
<td>3,066,718</td>
<td>618,110</td>
<td>*****</td>
<td>4.8</td>
<td>*****</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>’08 – ’12</td>
<td>Aircraft</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.0</td>
<td>*****</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>’04 – ’08</td>
<td>Military</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46.4</td>
<td>*****</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>’07 – ’11</td>
<td>Miscellaneous & Others</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
<td>*****</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL AUTOMOTIVE:

| 617,424,446 | units | 11,439,776,581 |

6

06 – 10

MOTIVE POWER:

| 1,814,984,710 |

10

02 – 06

STATIONARY >25Ah:

| 1,097,494,314 |

5

06 – 10

STATIONARY SSL ≤25Ah:

| 0 | 40,448,215 | 112,263,953 | 37,047,104 | 2,245,279 | 106,617,563 | 4.4 | 469,117,279 |

TOTAL POUNDS OF LEAD IN BATTERIES CONSUMED DOMESTICALLY:

| 14,821,372,884 |

LEAD RECYCLED FROM BATTERIES:

| 12,156,184,159 |

TOTAL LBS. LEAD IN BATTERIES CONSUMED DOMESTICALLY

| 14,821,372,884 |

BATTERY SCRAP LEAD IMPORTS

| 408,150,350 |

BATTERY SCRAP LEAD EXPORTS

| 2,984,258,414 |

BATTERY LEAD AVAILABLE IN U.S. FOR RECYCLING

| 12,245,264,820 |

2012-2016 RECYCLING RATE

| LEAD RECYCLED: | 12,156,184,159 |

RATE

| 99.3% |

* - Stationary SSLA ≤ 25Ah was previously included in the Total Automotive.
B. Footnotes

1/ Source: BCI Lead Content and Expected Life by Battery Type Survey (for automotive batteries). Collected for the years 2012 – 2016.

 Note: The average life for industrial batteries was developed in consultation with industrial battery manufacturer experts. The average life for SSLA batteries was developed in consultation with SSLA battery manufacturer/importer experts.

2/ “Year of Manufacture” is equivalent to the year the product shipped.

3/ Source: Department of Commerce, Battery Exports

 HTS # 8507.100030 (LEAD-ACID BATTERIES OF A KIND USED FOR STARTING PISTON ENGINES, NEW, 12 VOLTS, NOT EXCEEDING 6KG IN WEIGHT), 2010 – 2014 Export Data, Motorcycle Batteries

 HTS # 8507.100060 (LEAD-ACID BATTERIES OF A KIND USED FOR STARTING PISTON ENGINES, NEW, 12 VOLTS, EXCEEDING 6KG IN WEIGHT), 2008 – 2012 Export Data, Passenger Car Batteries

 HTS # 8507.100090 (LEAD-ACID BATTERIES OF A KIND USED FOR STARTING PISTON ENGINES, NEW, OTHER THAN 12 VOLT), 2009 – 2013 Export Data, Truck and Heavy Duty Commercial Batteries

 HTS # 8507.200030 (LEAD ACID STORAGE BATTERIES, NEW, NESOI, 6 VOLTS), 2007 – 2011 Export Data, SSA Batteries

 HTS # 8507.200040 (LEAD ACID STORAGE BATTERIES, NESOI, NEW, 12 VOLTS), 2007 – 2011 Export Data, SSA Batteries

 HTS # 8507.200060 (LEAD ACID STORAGE BATTERIES, NEW, NESOI, 36 VOLTS), 2006 – 2010 Export Data, Motive Power Batteries estimated at 1800 pounds per battery

 HTS # 8507.200090 (LEAD ACID STORAGE BATTERIES, NEW, NESOI, EXCEPT 6 VOLTS, 12 VOLTS, AND 36 VOLTS), 2007 – 2011 Export Data, SSA Batteries

 HTS # 8703.101000 through HTS # 8703.900000 (PASSENGER MOTOR VEHICLES)

 HTS # 8704.101000 through HTS # 8704.900000 (MOTOR VEHICLES FOR THE TRANSPORT OF GOODS)

 HTS # 8711.100000 through HTS # 8711.500060 (MOTORCYCLES)

 Estimate: 2007 – 2011 imports for products containing an SSLA battery are estimated. The estimate is determined by taking SSLA battery imports and multiplying it by 33%; the estimated number of additional SSLA batteries that are coming into the United States in a product.

 HTS # 8703.101000 through HTS # 8703.900000 (PASSENGER MOTOR VEHICLES)

 HTS # 8704.101000 through HTS # 8704.900000 (MOTOR VEHICLES FOR THE TRANSPORT OF GOODS)

 HTS # 8702.100000 through HTS # 8702.900000 (PUBLIC TRANSSPORT TYPE PASSENGER MOTOR VEHICLES)

 HTS # 8711.100000 through HTS # 8711.500060 (MOTORCYCLES)

 Note: Vehicle imports/exports are included for those vehicles known to contain a battery when shipped.

 Virtually 100% of cars and trucks contain a battery when they are imported/exported (otherwise they would be unable to move them) – per Tim Lafond, Johnson Controls Battery Group, Inc. (2009).

 Most motorcycles contain a battery when imported/exported – per Motorcycle Industry Council (January 1991).

 Typically, forklifts that are imported into the US do not contain lead acid batteries – per Troy Greiss, East Penn Mfg. Co., Inc. (2009).

 Estimate: 2007 – 2011 exports for products containing an SSLA battery are estimated. The estimate is determined by taking SSLA battery imports and multiplying it by 2%; the estimated number of SSLA batteries that are exported back out of the United States in a product.
B. Footnotes (continued)

6/ Batteries Consumed Domestically is found by taking battery shipments, subtracting battery exports, adding vehicle imports and subtracting vehicle exports.

7/ Source: BCI Lead Content and Expected Life by Battery Type Survey (for automotive batteries). Collected for the years 2012 – 2016.

The average lead weight for Motorcycle and SSLA batteries was developed in consultation with Motorcycle and SSLA battery manufacturer/importer experts.

8/ Lead in Batteries Consumed Domestically is found by multiplying the Batteries Consumed Domestically (in units) by the Average Lead Weight for each product category.

The Lead Consumed in Motive Power and Stationary Batteries was collected in pounds and did not need to be converted from units.

9/ Source: BCI Monthly Shipment Report (covering domestic shipments and exports). Data utilized includes all batteries shipped (sold) in the U.S., including batteries imported and then shipped. To avoid duplication in reporting, shipments to other BCI manufacturers are not reported. Shipments are reported by the BCI member who ultimately ships to the distributor, retailer, etc. SSLA shipments are assumed to be 100% imported, therefore, shipments equal zero.

10/ Actual shipments of motorcycle, aircraft, military and all other batteries are confidential. However, the data has been included in the calculations.

Miscellaneous & Other batteries generally include specialty automotive batteries; i.e., floor sweeping, trolley car and mine car batteries.

HTS # 7802.000030 (LEAD WASTE AND SCRAP FROM LEAD-ACID BATTERIES)
HTS # 8548.100540 (SPENT LEAD-ACID STORAGE BATTERIES, OF A KIND USED FOR STARTING ENGINES)
HTS # 8548.100580 (SPENT PRIMARY BATTERIES & SPENT ELECTRICAL STORAGE BATTERIES, NESOI, FOR RECOVERY OF LEAD)
HTS # 8548.102500 (WASTE & SCRAP OF PRIMARY CELLS, PRIMARY BATT. & ELECTRIC STORAGE BATT. FOR RECOVERY OF LEAD)

HTS # 7802.000030 (LEAD WASTE AND SCRAP FROM LEAD-ACID BATTERIES)
HTS # 8548.100540 (SPENT LEAD-ACID STORAGE BATTERIES, OF A KIND USED FOR STARTING ENGINES)
HTS # 8548.100580 (SPENT PRIMARY BATTERIES & SPENT ELECTRICAL STORAGE BATTERIES, NESOI, FOR RECOVERY OF LEAD)
HTS # 8548.102500 (WASTE & SCRAP OF PRIMARY CELLS, PRIMARY BATT. & ELECTRIC STORAGE BATT. FOR RECOVERY OF LEAD)

13/ Battery Lead Available in the U.S. for Recycling is found by taking the Total Pounds of Lead in Batteries Consumed Domestically, plus the Battery Scrap Lead Imports and subtracting the Battery Scrap Lead Exports.

14/ The Recycling Rate for the years 2012 – 2016 is found by dividing the total pounds of Lead Recycled from Batteries by the total pounds of Battery Lead Available in the U.S. for Recycling.

15/ Source: Department of Commerce, Battery Imports

HTS # 8507.208030 (LEAD ACID STORAGE BATTERIES, 6 VOLT, NESOI), 2007 – 2011 Import Data, SSLA Batteries
HTS # 8507.208040 (LEAD ACID STORAGE BATTERIES, 12 VOLT, EXCEPT OF A KIND USED FOR STARTING PISTON ENGINES), 2007– 2011 Import Data, Motive Power Batteries estimated at 1,800 pounds per battery
HTS # 8507.208060 (LEAD ACID STORAGE BATTERIES, 36 VOLT, EXCEPT OF A KIND USED FOR STARTING PISTON ENGINES), 2006– 2010 Import Data, Motive Power Batteries estimated at 1,800 pounds per battery