Comparison and Utilization of 1D, 2D, and 3D Hydraulic Models on a Complex Diversion Structure

Brinton Swift, P.E.
Project Partners

- Coastal Resource and Protection Agency
- U.S. Army Corps of Engineers
- HDR
- The Water Institute of the Gulf
- BCG Engineering
- Moffatt & Nichol
- Dynamic Solutions
- GeoEngineers
- Fugro
Presentation Overview

- Hydraulic Model Overview
- Application of Hydraulic Models
- Example of Hydraulic Modeling on Project
 - Project Needs
 - Model Selection
 - Model Results
 - Model Coordination
 - Lessons Learned
- Recommendations
Hydraulic Models

- 1 Dimensional Models
 - Cross Section Based Depth Averaged
 - Steady or Unsteady Modeling Approaches

- 2 Dimensional Models
 - Grid or Mesh Based Depth Averaged

- 3 Dimensional Models
 - Structured or Unstructured Grid or Mesh
General Application Of Hydraulic Models

- 1 Dimensional Model
 - Steady or Unsteady Riverine Systems
 - Flow Primarily One Direction
 - Minimal Split Flow

- 2 Dimensional Model
 - Shallow Floodplain Flow
 - Braided or Split Flow Conditions
 - Minimal Depth Varied Velocity (Sand Bars, River Bends, etc)

- 3 Dimensional Model
 - Complex Riverine Systems
 - Flow Around Structures
 - Depth Varied Velocities
Modeling For Mid Barataria Sediment Diversion

- **Large Scale Sediment Diversion on Mississippi River Goals**
 - Divert 15,000-75,000 cfs of Water and Sand
 - Maximize Land Building and Habitat Creation in Barataria Basin
 - Reduce Impacts to Environment and Residents
 - Limit Impacts to Navigation

- **Modeling Needs**
 - Identify Optimum Channel Size
 - Determine Impacts to Barataria Basin Hydraulics
 - Understand Inlet Hydraulics
 - Optimize Inlet Sediment Capture
Modeling for Mid Barataria Sediment Diversion

- **Modeling Approach**
 - **1 Dimensional Analysis**
 - Optimize 10% Channel Hydraulics
 - Investigate Channel Sediment Conveyance
 - Review Gate Operation and Bridge Impacts
 - **2 Dimensional Analysis**
 - Look at Impacts to Barataria Basin
 - Review Channel Geometry Hydraulic Impacts
 - Couple River and Basin Models
 - **3 Dimensional Analysis**
 - Identify Complex Hydraulics around Intake, Control Structures, and Transitions
 - Provide Better Understanding of Hydraulic Losses
 - Determine Sediment Capture Impacts
 - **Additional Models**
 - Water Quality
 - Storm Surge
 - Wave
 - Delta Land Building
Mid Barataria 1 Dimensional Model

- HEC-RAS Unsteady Model
 - Upstream Stage Boundary
 - Downstream Normal Depth Boundary
 - Approximate Expansion of Flow into Barataria Basin

- Benefits
 - Many Iterations of Geometric and Boundary Conditions
 - Runs very quickly

- Limitations
 - Doesn’t capture dynamics of structures and outfall
Mid Barataria 2 Dimensional Model

- HEC-RAS 2D Model
 - Barataria Basin
 - Linked River, Channel, Outfall Model
 - 1-Mile Outfall Area

- Benefits
 - Easy to set up
 - Relatively fast model run times
 - Large model domain
 - Stable platform

- Limitations
 - More difficult to run iterations of geometry
 - Doesn’t capture depth varied velocities around structures
Mid Barataria 3 Dimensional Model

- **FLOW3D CFD Model**
 - Investigated Inlet Combinations
 - Linked River, Channel, Outfall Model
 - Investigated Hydraulic Losses

- **Benefits**
 - Capable of modeling complex hydraulics of inlet, tracers, and particle tracking
 - Fairly easy to set up with the right solid files

- **Limitations**
 - Long model run times
 - Slightly more unstable
Mid Barataria Model Results

- 1 Dimensional HEC-RAS Model
 - Ran over 150 hydraulic models and 30 sediment transport models.
 - Identified long initial long term deposition rates in the diversion channel.
 - Created relationship curves for diversion channel geometry and velocities.
 - Investigated sensitivity to Barataria Basin water surface elevations.
Mid Barataria Model Results

- 2 Dimensional HEC-RAS Model Compared with 3 Dimensional FLOW3D Model
Mid Barataria Model Results

- 2 Dimensional HEC-RAS Model Compared with 3 Dimensional FLOW3D Model
Mid Barataria Model Results Comparison

- 2 Dimensional and 3 Dimensional in Good Agreement
- 1 Dimensional model clearly not in good agreement
 - Upstream energy losses appear to not be captured
 - Flow is definitely varied between the 3 inlet channels
Mid Barataria Model Coordination

- Inlet Losses
 - Much greater than expected ~ 2 ft
 - Adjusted HEC-RAS model for inlet losses
Mid Barataria Model Coordination

- HEC-RAS Ineffective Flow Areas
 - Adjusted based on 3D model results

1 Dimensional HEC-RAS

Ineffective Flow Boundaries

Upstream End Transition

3 Dimensional FLOW3D

velocity magnitude and vectors

(y multiplied by 1.e-05)
Mid Barataria Model Comparison

- Water Surface Elevations
 - Excellent agreement
 - Allowed Iterations of Channel Geometry, Operation, Assumptions
 - Promising results required confirmation with 2 Dimensional and 3 Dimensional Models
Mid Barataria Modeling

- **Lessons Learned**
 - Terrain is important
 - Time step is important
 - Grids are important, you can go overboard!
 - Model planning is essential
 - Significant hydraulic losses need to be considered around structures

- **Next Steps**
 - Linked hydraulic model with full Barataria Basin
 - Project specific geomorphic modeling
 - Physical Models (LSU & CPRA Small Scale Mississippi River Model)
 - Water quality models for Barataria Basin
Hydraulic Modeling Recommendations

- Each type of model is very useful
- Understand strengths and weakness of each model
- Plan modeling approach well in advance with entire project team
- Understand the system features!
- Sanity check everything!
Questions?