Flood Control Planning Below Alluvial Fans

Oasis Area Stormwater Master Plan

Presenter: Aric Torreyson P.E., Program Manager, Tetra Tech Inc.
Contributors: Nathan Schreiner, P.E., Project Manager, Tetra Tech Inc.
Tesfaye Demissie, P.E., Project Manager, Coachella Valley Water District (CVWD)
Dan Charlton, P.E., Assistant Director of Engineering, CVWD
Mark Johnson, P.E., Director of Engineering, CVWD
Presentation Objectives

• Provide a project overview and approach
• Problems associated with alluvial fans
• Project specific issues and solutions
• Benefits of the proposed Stormwater Master Plan (SMP)
Study Area
Overall Flood Risk
Oasis Area SMP Project Requirements

- Update of 2003 Hydrology with NOAA Atlas 14 rainfall data
- Update to FEMA FIS Study and FAN Analysis
- Development and alternatives analysis of SMP facilities
- Recommended Facility and Report
Oasis Area SMP Approach

- Identification and mapping of alluvial fans
 - Updated hydrologic modeling
 - Geomorphologic mapping
Oasis Area SMP Approach

• Constraints Mapping
 – Utilize geomorphology and Flo-2D mapping
 – Proposed developments (Travertine Point SP)
 – Reviewed existing facilities
 – Existing R/W and property lines
 – Environmental constraints
Issues with Alluvial Fans

• Uncertainty with Flooding
• Arid Region Hydrology – How much rainfall and how much runoff?
• Where will the storm flows go? Where can they go?
• Channel avulsion/split flows
• Debris/Sediment transport – How much to plan for?
• Environmental limitations
• Efficient collection/capture of storm flows
Hydrology Issues

- NOAA Atlas 14 Rainfall available but no published DARF’s
 - 30% increase from NOAA 2
- Oasis Area Streamflow records not available
- How to accurately determine peak flows and flood volumes?
Hydrology

Lower Peak Hydrology
- Martinez Canyon Fan
- Sheep Canyon Fan
- Unnamed Canyon Fan
- Barton Canyon Fan

Higher Peak Hydrology
- Martinez Canyon Fan
- Sheep Canyon Fan
- Unnamed Canyon Fan
- Barton Canyon Fan

Legend
Flow Depth (feet)
- 0.010 - 0.500
- 0.501 - 1.000
- 1.001 - 3.000
- 3.001 - 6.000
- 6.001 - 9.000

EASTERN COACHELLA VALLEY STORMWATER MASTER PLAN FLOODING COMPARISON
Hydrology

- Calibrated HEC-HMS model not practical due to limited stream gage data for Coachella Valley
- CVWD adapted Ordinance No. 1234.1 (March 2013) as standard design policy
 - Precipitation data NOAA Atlas 14, Volume 6, Version 2
 - DARF’s per CVWD Ordinance 1234.1
 - “For watershed areas that exceed 10 square miles, the USACE (1980)/Bechtel (1997) DARFs shall be utilized. For watersheds less than 10 square miles, a DARF of 1.0 shall be used.”
- Average increase of 15% (peak flow) at Fan Apex
Alluvial Fan Mapping Issues

• Where will the storm flows go? Where can they go?
• Utilized procedures outlined in Guidelines and Specifications for Flood Hazard Mapping Partners FEMA (2002)
 – Historical Aerial Photographs
 – Two-Dimensional Flood Models
 • FLO-2D Flood Routing Model
 • Intermap DTM surface used
 – Field Investigations
 • Geomorphology Mapping of Active/Inactive areas
 • Utilized GPS enabled tablets and cameras for documentation
Historical Aerial Photographs
Historical Aerial Photographs
Historical Aerial Photographs
Historical Aerial Photographs
Active/Inactive Delineation
Split Flow/Channel Avulsion

Flo-2D model of Martinez Canyon

Flo-2D model of Flow on AP7
Field Investigations
FEMA FAN Analysis
Sediment Management

• Analysis based upon FEMA “Fan-Model” guidance, which presumes that critical flow occurs everywhere on alluvial fan surfaces
• Corps’ SAMwin software used to predict sediment-transport rates and sediment yield
• Yang’s sediment-transport equation selected as the “best” formula for use in SAMwin software
• Sediment Yield predicted at locations immediately upstream of channel inlets
Sediment Management

- 100-year flood peak and flood hydrograph utilized
- Manning “n” adjusted to assure critical flow
- Cross-sections in SAMwin based on typical geometries for channels (e.g., width, depth, longitudinal slope, etc.)
Sediment Management

• Calculate sediment load to systems and debris basin volumes
• Equilibrium Slopes for natural channel alternative
• Determine minimum channel slopes to prevent settling
• Alternative debris basin locations
• “n” value adjustments for debris laden flows in channel
Development of SMP facility alignment

- Utilize Geomorphology and Flo-2D mapping
- Proposed Development (Travertine Point SP)
- Reviewed Existing Storm Channel Facilities
- Existing R/W and Property Lines
- Limit Environmental Impacts
Existing Facilities
Environmental Constraints
Selected Regional Facilities
Oasis Area SMP Alignment Alternatives
Oasis Area SMP Alignment Alternatives
SMP Alternatives Analysis

- 100-year storm flows routed in Flo-2D to proposed facility
- Utilized 3 regional system and 5 regional system alignments
- Assumed channel avulsion could occur for 5 system option
- Channel lining materials consist of concrete and soil cement
- Debris basin required – upstream and mid system option
SMP Alternatives Analysis

- Channel sizing based upon HEC-RAS hydraulic model
- 8 Alternatives analyzed for each system
- Included a “natural” bottom alternative
- Preliminary permit (local, state and federal permits)
- Capital, O&M, and life cycle cost analysis for each alternative
 - Maintenance included additional cost due to sediment
- Select most cost effective and environmentally acceptable SMP
Selected Plan

- 3 Regional system alignment
- Upstream debris basins
- Trapezoidal concrete channels
QUESTIONS?

Aric Torreyson
Aric.Torreyson@tetratech.com
Tetra Tech
17885 Von Karman Avenue, Suite 500
Irvine, CA 92614