Channel Restoration
San Clemente Dam Removal

Adam G. Raczynski, PE, CFM
Channel Restoration
San Clemente Dam Removal

• Official Project Name:
Carmel River Reroute and San Clemente Dam Removal (CRRDR)

• Presentation Outline
 ▪ Project Overview and Goals
 ▪ Project History
 ▪ Channel Restoration Design
 ▪ Iterative Two-Dimension Modeling
 ▪ Design-Build
 ▪ Construction (in progress)
Project Overview
Project Overview

San Clemente Creek
Carmel River
West Tributary
San Clemente Dam
East Tributary
Project Overview

- Project Features
 - Dam Removal
 - Reroute and Diversion Dike
 - Carmel River to San Clemente Creek
 - Sediment Stockpile
 - Stabilized Sediment Slope and East Tributary Design
 - Channel Restoration
 - Habitat Restoration

Channel Restoration for the San Clemente Dam Removal
Project Goals

Provide river function which includes:

- Fish passage,
- Sustainability,
- Aquatic habitat, and
- Natural variability
Project History

- 106-foot-high, 300-foot-long Concrete Arch
- 24 openings (6 ft W x 12 ft H)
- Original Capacity = 1425 acre-ft

Channel Restoration for the San Clemente Dam Removal

- May 1920 – March 1922
- 7,070 CY of Concrete
- Current Capacity = 70 acre-ft
Channel Restoration Design

- Step-Pools
- Plane Bed
- Riffle Bed
- Resting Pools
- LWD and Other Floodplain Roughness Elements
- Channel Stability for 50-year return period flood

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Recurrence Interval (yr)</th>
<th>UCR&RR</th>
<th>SCC</th>
<th>CFR</th>
<th>Below SCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.9</td>
<td>1.1</td>
<td>272</td>
<td>33</td>
<td>307</td>
<td>309</td>
</tr>
<tr>
<td>66.7</td>
<td>1.5</td>
<td>822</td>
<td>99</td>
<td>928</td>
<td>934</td>
</tr>
<tr>
<td>50.0</td>
<td>2</td>
<td>1,391</td>
<td>167</td>
<td>1,569</td>
<td>1,581</td>
</tr>
<tr>
<td>20.0</td>
<td>5</td>
<td>3,244</td>
<td>390</td>
<td>3,661</td>
<td>3,687</td>
</tr>
<tr>
<td>10.0</td>
<td>10</td>
<td>4,999</td>
<td>601</td>
<td>5,641</td>
<td>5,700</td>
</tr>
<tr>
<td>4.0</td>
<td>25</td>
<td>7,205</td>
<td>867</td>
<td>8,131</td>
<td>8,256</td>
</tr>
<tr>
<td>2.0</td>
<td>50</td>
<td>8,918</td>
<td>1,015</td>
<td>10,006</td>
<td>10,200</td>
</tr>
<tr>
<td>1.0</td>
<td>100</td>
<td>10,655</td>
<td>1,145</td>
<td>11,886</td>
<td>12,100</td>
</tr>
<tr>
<td>0.2</td>
<td>500</td>
<td>14,592</td>
<td>1,475</td>
<td>16,184</td>
<td>16,600</td>
</tr>
</tbody>
</table>
Channel Restoration Design

• **Step Pools**
 - Step-pool sequences include 5 to 11 individual steps with drop heights of 1 foot
 - Sub-Reaches: 125 to 200 feet long
 - Individual Step-Pools: 20 to 31 feet long
 - Maximum slope of 5%

• **Resting Pools**
 - Maximum Spacing of 200 feet
 - Minimum Length of 75 feet
 - Cover habitat of 40 percent of the pool margin
 - Total Energy Dissipation Factor (EDF) of 4
 - \(EDF = \frac{gQh}{V} \)
 - Where \(g \) is the unit weight of water, \(Q \) is total discharge, \(h \) is the head drop over the step, and \(V \) is the total pool volume
Channel Restoration Design

- **Plane Bed**
 - Plane-bed Segments have lengths up to 190 feet, depth of 3 feet, bottom width of 55 feet, and a maximum slope of 2%

- **Riffle Bed and Riffle Pool**
 - Reroute Channel, approximately 780 feet long, typical depth of 3 feet, bottom width of 60 to 65 feet, and a slope of 0.75%
Iterative Two-Dimensional Modeling

- Channel Design or Redesign
- Constructability Review
- AutoCAD Civil 3D
- Meet Requirements?
- SRH-2D
- Results Review

Channel Restoration for the San Clemente Dam Removal
Iterative Two-Dimensional Modeling

- Channel Design or Redesign
- AutoCAD Civil 3D
- SRH-2D
- Meet Requirements?
- Results Review

Channel Restoration for the San Clemente Dam Removal
Iterative Two-Dimensional Modeling

Channel Design or Redesign

Constructability Review

AutoCAD Civil 3D

Meet Requirements?

SRH-2D

Results Review

Channel Restoration for the San Clemente Dam Removal
Iterative Two-Dimensional Modeling

Channel Design or Redesign

Constructability Review

Meet Requirements?

AutoCAD Civil 3D

SRH-2D

Results Review

Channel Restoration for the San Clemente Dam Removal
Iterative Two-Dimensional Modeling

- Channel Design or Redesign
- AutoCAD Civil 3D
- SRH-2D

Bed profile and water-surface profiles over the range of fish passage flows

Depth patterns in a typical step-pool sequence during fish passage flows: 16 cfs

Meet Requirements?
Iterative Two-Dimensional Modeling

Channel Design or Redesign

Constructability Review

Meet Requirements?

AutoCAD Civil 3D

SRH-2D

Results Review

Energy Dissipation Factor (lb/ft)

Discharge (cfs)

Pool 1
Pool 2
Pool 3
Pool 4
Pool 5
Pool 6

Channel Restoration for the San Clemente Dam Removal
Iterative Two-Dimensional Modeling

- Channel Design or Redesign
- AutoCAD Civil 3D
- SRH-2D
- Meet Requirements?
- Results Review
- Constructability Review

Channel Restoration for the San Clemente Dam Removal
Channel Restoration Design
Design-Build

- Design Schedule
- Short Construction Windows
 - May to October
- Site Balancing
 - Boulders
 - Earthwork
 - Large Woody Debris

Channel Restoration for the San Clemente Dam Removal
Construction

Step-Pool Construction
Construction

Large Woody Debris

Channel Restoration for the San Clemente Dam Removal
Construction

Upper Carmel River

View from East Tributary
Construction

Dam Removal
Questions?

Presenter Contact Information:
Adam G Raczynski, PE, CFM
3030 N 3rd Street, Suite 200
Phoenix, Arizona 85012
adam.raczynski@tetratech.com
Mobile: 520-490-8205

For more information visit:
sanclementedamremoval.org