Improving Emergency Coordination on the Sacramento River and the Cosumnes River Systems

2017 FMA Conference

September 7th 2017

MD Haque, PE (DWR)
Ashok Bathulla, PE, CFM, D.WRE (GEI)
Chris Ferrari, PE, CFM (GEI)
Jeremy Hill, PE (DWR)
Purpose and Goals

• Develop a system to generate dynamic flood inundation maps in near real-time

• Leverage on high resolution topographic data, hydraulic models, improved hydrologic forecasts, and web-based mapping applications

• Supplement flood intelligence (river stage forecast)

• Improve flood intelligence information exchange through web-based applications
RTIM Tool and Main Steps

• Insert CNRFC forecast data into:

• Run hydraulic model:

• Develop real-time & forecast flood stages and flood inundation maps
Why Hydraulic Routing?

- Additional Stage Forecast Locations
- Effectively evaluate areas affected by backwater
- Hydraulically complex areas
- Tidal effects
- Levee breaches
- Lateral diversions (gates)
- Off-channel storage areas
Sacramento River System Model Layout

- 44 total boundary conditions
- 6 CNRFC forecast releases
 - 3 CNRFC downstream tidal
- 22 Local Watersheds
- 10 Constant flow conditions
- Sacramento Weir 48 Gates

Model 2D Extents
RTIM Tool
Sacramento River Watersheds Uncontrolled vs. Controlled

I. Sacramento River Watershed Total
(Approximately 27,500 sq. mi.)

II. Controlled Watersheds:
- Shasta; (6,980 sq. mi.)
- Oroville; (3,625 sq. mi.)
- NBB; (1,140 sq. mi.)
- CFW; (400 sq. mi.)
- American(2,050 sq. mi.)

II. Uncontrolled Local Watershed
(13,300 sq. mi.)

III. Tidal Influence:
- San Francisco Bay
Testing the Forecasting Tool
February 2017 Results

February 8, 2017 Forecast Model Results
American River at H Street

Date: February 2017
American River at H Street (AME, R01, RS: 6.591)
Model Evaluation: February 9, 2017, 1:00 P.M.
Testing the Forecasting Tool
February 2017 Results

American River at H Street (AME, R01, RS: 6.591)
Model Evaluation: February 10, 2017, 1:00 P.M.

River Stage (Feet, NAVD 88)

Hindcast
Forecast

February 2017

- HEC-RAS Model
- CNRFC Forecast
- CDEC Gage
- Model Evaluation
Sacramento River at I Street (SAC, R08, RS: 59.789)
Model Evaluation: February 10, 2017, 1:00 P.M.

- **Hindcast:** The historical data showing the river stage over time.
- **Forecast:** The predicted river stage using the forecasting tool.

The graph compares the HEC-RAS Model, CNRFC Forecast, and CDEC Gage for the period of February 2017.
Yolo Bypass at Lisbon (YOL, R03, RS: 36.073)
Model Evaluation: February 10, 2017, 1:00 P.M.
Cosumnes River Forecast Model

I. Controlled Watersheds:
• Mokelumne River (2,100 sq. mi.)

II. Uncontrolled Watersheds:
• Cosumnes River (724 sq. mi.)
• Morrison Creek (125 sq. mi.)

III. Tidal Influence
• San Francisco Bay into Sacramento and San Joaquin Rivers
Cosumnes River System Model Layout

- 5 total boundary conditions
 - 1 CNRFC forecast locations (Michigan Bar)
 - 1 CNRFC downstream tidal (Benson Ferry)
- 1 Local Watersheds
 - 2 Constant flow conditions
- No Diversion Gates
- Mokelumne River Reservoir Control
Testing the Cosumnes River Forecast
February 11, 2017

- Map provided 1.5-day lead time
- Local flow gage was lost.
- Flood timing was reasonable
- Computed stage was low by 1’
- Forecast allowed evacuation of small planes and equipment from Franklin Field
Cosumnes River System
Flow Comparison
February 2017 vs. 1997

- Cosumnes River at McConnell near Highway 99
 - 2017 – 46,000 cfs
 - 1997 – 104,000 cfs
Cosumnes River
1997 vs. February 2017
Stage Comparison

- **Cosumnes River at McConnell**
 - 2017 Peak Stage – El. 43.4’
 - 1997 Peak Stage – El. 47.9’

- **Mokelumne at Bensons Ferry**
 - 2017 – El. 20.7’
 - 1997 – El. 21.7’

- **San Joaquin River**
 - Tidal @ Approx. 9.0’
Key Elements for Successful Flood Forecasting

• Accurate Forecast Data
 • Communication between NWS and Reservoir Operators (F-CO)
 • Local flows

• Well represented, robust, and faster running hydraulic model

• High resolution animations, improved user experience with the tool, and disseminate information using web-based GIS mapping platform
Challenges

• Dependent on accurate NWS 6-hour forecasts
• Improving the model stability to run a wide range of flows
• Simplifying the system-wide model to improve run times without compromising the accuracy
• HEC-RAS software limitations (e.g. limited parallel processing abilities)
• Improving the RTIM user experience
Next Steps

• Enhance features in the RTIM tool
• Improve user experience with the RTIM tool
• Coordinate with CNRFC on local flows and RTIM applications
• Improve coordination with locals
• Update the model geometry with the latest data
• Improve model run time
State Officials Open More Flood Gates at Sacramento Weir

Questions