Feasibility and Design of a Multi-Objective Stream Restoration in a Highly Constrained Urban Environment:

Escondido Creek in Escondido, CA

Luke Tillmann

cbec eco engineering

John Stofleth

cbec eco engineering
The Escondido Creek Watershed – Overview

Source: Carlsbad Watershed Management Area Water Quality Improvement Plan (WQIP, 2016)
Existing Conditions – Escondido Creek Transect

Photos all taken on same day in mid-August 2018
Existing Conditions – Water Quality Concerns

• 2010 CWA Section 303(d) Listing:
 • Enterococcus, fecal coliform, manganese, phosphate, selenium, sulfates, TDS, N, DDT, toxicity

• Water Quality Improvement Plan:
 • Highest Priority Water Quality Condition: riparian habitat degradation:
 • Non-native vegetation
 • Concrete-lined channels
 • Dry weather flows
 • Trash
 • Water quality concerns
Existing Conditions - Escondido Creek at Grape Day Park

- Escondido Creek
- Grape Day Park
- Parking lot
- City Hall

ArcGIS World Imagery

cbec drone image
Past Restoration / Stormwater BMP Considerations

- City of Escondido Creeks Hydraulic Study (Michael Baker)
 - Four Alternatives:
 - Vegetate channel bottom (about 34 ft wide)
 - Grade control (rock weirs) + minor vegetation
 - Grade control + greater vegetation
 - Vegetate 10 ft width of channel bottom
 - Outcomes
 - Varying levels of percolation for dry season flows
 - Increases in 100-year flood WSE by 2.2 – 11.7 ft, necessitating channel widening of up to over 4x existing width
 - Alternative Compliance / LID:
 - Parking lot: underground BMP for stormwater retention, infiltration
Current Restoration Considerations

• Possibilities for Design
 • Sloped, vegetated side wall
 • Relatively little land needed
 • Increases flow area
 • Inset floodplain:
 • Naturalized bed for percolation
 • Raised floodplain feature for high flows
 • Allows for flow expansion
 • Can double as recreation space
 • Connected side channel:
 • Limits flood impacts by retaining FCC structure
 • Natural bed for percolation, habitat
 • Most land, cost intensive
Inset Floodplain Concept – Hydraulic Modeling

As-built designs (1965)

FG HEC-RAS 1D-2D Model

2.5 ft cells

Results

EG HEC-RAS 1D-2D Model
Shifting to Side Channel Concept

• Inset floodplain likely infeasible
 • With FCC design flow discharges of ~ 30 ft/s in supercritical flow regime...
 • Hydraulic jump forms at location of floodplain
 • Validated with 1-D modeling as well

• Side channel concept progressed
 • Multi-objective considerations
 • Maintain flood capacity of FCC
 • Incorporate into existing plans for Grape Day Park
 • Provide for recreation activities / public access
 • Urban habitat
 • Water quality
 • Economics / Redevelopment
Potential for Alternative Compliance

Portion of storm drainage network
Minneapolis: “City by Nature,” “City of Lakes,” “City of Parks”

Elements:
- Urban nature / recreation
- Branding / economic dev.
Vision and Inspirations – San Luis Obispo, CA

Development along creek corridor

Elements:
- Urban stream restoration
- Economic redevelopment
Vision and Inspirations – Davis, CA

Elements:
- Highly managed, pseudo-natural system
- Blend of recreation opportunities
- Habitat
- Stormwater management

UC Davis Arboretum

Historic Putah Creek Channel