Exploring Water Resources Systems Vulnerabilities and Adaptations to Climate Change in California

2019 Floodplain Management Association Conference

Romain Maendly | September 5th 2019
Outline

• Why this project – Background, goals, projects overview
• General study design for vulnerability assessment
• Adaptive planning strategy
• Next steps
Connecting Climate to Flood

- Must link climate process to daily time scale
- This linkage is also important for drought understanding
Background and Purpose

• Past studies have shown increasing flood risk in the Central Valley in the future due to climate change.

• 2017 CVFPP Update Climate Change Study has integrated climate change risks in flood planning in the Central Valley.

• This project aims to enhance and extend climate change vulnerability assessment efforts and improve stakeholder understanding.
Goals

• **Quantify deep uncertainties** in flood and drought prediction under climate change

• **Formulate a systematic framework** for assessing future risks and developing economically efficient, robust, and flexible plans to mitigate risk

• **Inform other project/planning efforts**
Top Down Approach

Select a couple of GCM Projections

Downscaling, Hydrologic Modeling

Operations and Planning Models

Conditional System Performance Projections
Top Down Approach

Select a couple of GCM Projections

Downscaling, Hydrologic Modeling

Operations and Planning Models

Conditional System Performance Projections

Bottom Up Approach

Adaptive Planning

Climate Model Ensemble

Vulnerability Assessment

Operations and Planning Models
General Study Design

- Operations and Planning Models (HEC-WAT)
- Global Climate Model Projections
- System Response Surface/Stress Test
- System Base Performance/Probabilistic Vulnerability Assessment
- Adaptive Planning
- Weather Generator
- Systematic Climate Perturbations
Weather Generator

- Annual Module
- Seasonal Module
- Daily Module
- Hourly Module

Observed or historical time series of weather data

Many simulated time series of weather data
Systematic Climate Perturbations

Annual Maximum Precipitation

Thermodynamic

Today’s Result

Temperature Change
Clausius-Clapeyron

Dynamic

Inter-Annual
Precipitation

Pfahl et al (2017), Understanding the regional pattern of projected future changes in extreme precipitation
Systematic Climate Perturbations

Climate Perturbation Scenarios

- Temperature Change: 0, 2, 3, and 4°C
- Precipitation Change: -12%, -9%, -6%, -3%, 0%, 3%, 6%, 9% and 12%
- Clausius-Clapeyron: none, 1X and 2X

Fischer et al (2017), Observed heavy precipitation increase confirms theory and early models
Operations and Planning Models
HEC-WAT

Weather Generator

Simulation Data and Results (DSS)

HEC-WAT System Based Performance

HMS
RES SIM
RAS
FIA
HEC-HMS Model Overview

- 27 total subbasins
- Unimpaired flow simulation
 - Calibration points: Unimpaired inflow to each reservoir and Dry Creek @ Modesto
- Results compared to daily unimpaired flow estimates from Steiner FERC model
HEC-ResSim Model Overview

Three upstream reservoirs

San Joaquin Pipeline

Combined Canals

Don Pedro

Inflow from HMS
HEC-RAS Model Overview

- Based from CVFED Model
- Calibrated with the 2011 and 2017 events
- Model handles extreme events (~320,000cfs)
HEC-FIA Model Overview

• The inventory is a combination of point structure data from:
 ➢ CVFPP 2017 Update’s HEC-FDA
 ➢ And, the National Structure Inventory

• Warning System/Time Feedback based on local input

• Calibrated based on the 1997 and 2017 events
Preliminary Results

- Start from the top of the watershed down to the reservoir release
- A subset of the data computed
- Preliminary results, therefore need to take them with a grain of salt
Assessment Synthetic 1997 Event

85% rain

7% increase

14% increase

52% reduction
Hydrological Cycle Shift

![Graphs showing hydrological cycle shift with different temperature scenarios.

- Current
- +2C (cc 1x)
- +3C (cc 1x)
- +4C (cc 1x)
Don Pedro October Storage
Increase in Flood Events

![Graph showing the relationship between DNP 3-Day Inflow and DNP 3-Day Outflow for current conditions and +2C, +3C, +4C scenarios.]

- **Current**: Dotted line
- **+2C (cc 1x)**: Red dots
- **+3C (cc 1x)**: Orange dots
- **+4C (cc 1x)**: Green dots
- **Flood Stage**: Yellow line
- **Monitor Stage**: Green line

![Bar chart showing annual max event count for different change in average annual temperature.]

- **0** change: 7 events, [1 event per 150 yrs]
- **2** change: 21 events, [1 event per 50 yrs]
- **3** change: 44 events, [1 event per 24 yrs]
- **4** change: 60 events, [1 event per 17 yrs]

- **Monitor Stage**
 - **0** change: 142 events, [1 event per 7 yrs]
 - **2** change: 166 events, [1 event per 6 yrs]
 - **3** change: 266 events, [1 event per 3 yrs]
 - **4** change: 254 events, [1 event per 4 yrs]

Note: This graph illustrates the increase in flood events due to changes in average annual temperature, showing a significant rise with higher temperature scenarios.
Vulnerability Assessment Metric

- **Flood Risk**
 - Expected Annual Damage / Life Loss
 - Population and Assets in 100yr Floodplain

- **Water Supply/Irrigation**
 - Don Pedro storage on Apr 1st, July 1st, and Oct 1st
 - Don Pedro deliveries to irrigation channel

- **Environmental**
 - San Joaquin River Basin Index
 - Evapotranspiration
 - Snow Water Equivalent (SWE)
Vulnerability Assessment Next Steps

Hypothetical Expected Annual Damage

Better than current conditions scenarios:
- ~15% likelihood
- Limited or No Adaptation

Likely Scenarios
- worse than current conditions
- ~65% likelihood
- Some level of new protection needed

Outlier Scenarios
- Extreme outcomes
- ~10% likelihood
- Massive additional protection needed
Integrated Adaptation Strategies

Based on the system’s vulnerabilities, formulate robust actions and flexible plan to deal with future risks and uncertainties.

Projects/actions that foster sustainability and integrated water resources management

- Flood-MAR
- Rule curve shift/modification
- FIRO
- Increase capacity of infrastructures
- Non structural improvement
Next Steps

• Finalize Vulnerability Assessments

• Evaluate Adaptive Strategies

• Documentation

• Continue to Engage and Communicate the Study Status with Locals and other Stakeholders
Thank You

Romain Maendly,
California Department of Water Resources
Romain.Maendly@water.ca.gov

But also Wyatt Arnold¹, David Arrate¹, John Kucharski², Jenny Olszewski², Lee Bergfeld³, Wesley Walker³, Scott Steinchneider⁴, Patrick Ray⁵ and Rahat Saiful Haque⁵

¹California Department of Water Resources
²USACE
³MBK
⁴Cornell University
⁵University of Cincinnati

And our partners at Turlock Irrigation District!