Expanding Our Knowledge of Climate Uncertainty – An Experimental Design at the American River Basin

Wayne Li, Ph.D., PE, CFM
Wood Rodgers Inc.

Sept 6, 2019
Climate Change and its Impact

According to California’s 4th Climate Change Assessment, Climate change is already impacting California:

- Rising Temperatures and Extreme Heat
- Changing Precipitation Patterns
- More Extreme Storm Events
- Sea Level Rise
- Wildfire
Flood Management Under Climate Change

- More extreme floods
- Greater floodplain vulnerability
- Pressure to expand flood control infrastructures
- Planning, modeling and design challenges
- Uncertainty quantification
Uncertainty in Hydraulic Modeling

Sources of Uncertainty:

- Model Geometry Uncertainty
 Simplified geometry representation; erosion; land subsidence

- Hydrology Uncertainty
 Poor knowledge in initial & boundary conditions; Climate Change

- Parameter Uncertainty
 Roughness coefficient, rating curve, etc.
Uncertainty In Modeling at Different Scales

- Uncertainty - Climate
- Model Complexity
- Computational Limit

Run time ?
Model Error ?

Run time ~ 6 hr
Model Error ~ 3 ft

Run time ~ 30 min
Model Error ~ 1 ft

Run time < 1 min
Model Error ~ 0.5 ft

Continental Scale
(1000 miles)

Basin Scale
(1 miles ~ 100 miles)

River Reach Scale
(100 ft~ 1 miles)

Hydrologic & Hydraulic Unit Scale
(1 ~ 100 ft)

Spatial & Temporal scale
Experimental Design

An experimental design for the American river to quantify uncertainty on hydraulic modeling:

- Base Condition – Well calibrated 1D HEC-RAS model (1997 event), assume that the model geometry, parameters and hydrology input are ‘stationary’ and therefore the stage profile along the river is ‘fixed’.

- Climate Uncertainty – Use downscaled climate projection to generate synthetic flow events, representing climate uncertainty

- Model Geometry Uncertainty – Varied streambed geometry to represent geometry uncertainty

- Parameter Uncertainty – Varied n value for river cross sections to represent parameter uncertainty
Climate Uncertainty – Base Hydrology

1997 Event

Flow (cfs)

12/28/1996 0:00 12/30/1996 0:00 1/1/1997 0:00 1/3/1997 0:00 1/5/1997 0:00 1/7/1997 0:00 1/9/1997 0:00 1/11/1997 0:00

0 20000 40000 60000 80000 100000 120000 140000
Climate Uncertainty – Climate Projection (RCP 4.5)

Dec-Jan-Feb Monthly Streamflow - American River at Fair Oaks

<table>
<thead>
<tr>
<th>Flow Observation</th>
<th>Flow Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below Normal</td>
<td>63 (33%)</td>
</tr>
<tr>
<td>Normal</td>
<td>64 (34%)</td>
</tr>
<tr>
<td>Above Normal</td>
<td>63 (33%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Future Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below Normal</td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>Above Normal</td>
</tr>
</tbody>
</table>

Source: Cal-Adapt Streamflow Projection & California DWR
Climate Uncertainty – Synthetic Flow Generation

Synthetic monthly flow

99th Percentile
Climate Uncertainty – Synthetic Flow
Climate Uncertainty – Results
Climate Uncertainty – Results
Flooding causes river bank erosion, sediment deposition and channel migration, representing uncertainty in channel geometry.
Geometry Uncertainty – Example
Geometry Uncertainty – Results

Geometry Uncertainty Results

- Invert
- 1997 Event
- Upper Range
- Lower Range

River Mile
Elevation (ft, NAVD 88)
Parameter Uncertainty – Manning’s n value

- Base condition – 1997 events calibrated n value

- Uncertainty in n value due to changes in vegetation cover, erosion condition and channel geometry

- Tested upper bound and lower bound of n value changes along the American River against base condition
Parameter Uncertainty – Results
Conclusion

- Climate uncertainty dominates in hydraulic modeling and generates a much larger band of possible model outputs.
- Geometry uncertainty and parameter uncertainty have relatively smaller influences on model outputs.
- More study is needed to better quantify the uncertainty caused by climate change at different spatial scales.
- Future infrastructure planning and design should be guided by detailed climate studies.
LESSONS LEARNED

Given all sources of uncertainty, engineers/modelers have to

- Fully understand the scale & objectives of the modeling task;
- Know the limitations of the modeling tool used;
- Evaluate the quality of data provided;
- Investigate feasible modeling alternatives available; and most importantly
 - Make sound and logical engineering judgment
Thanks!
Questions?