

FDOT Experimental Projects Performance

2020 FTBA Construction Conference Orlando, Florida

Abdenour (Nour) Nazef, P.E.
Pavement Systems Evaluation Engineer
State Materials Office

Topics of Discussion

Overview

- Projects Performance
 - ➤ Pavement Preservation (PP)
 - ➤ Crack Relief (CR)
 - ➤ High Polymer (HP)
 - ➤ Quiet Pavement (FC-Q)
 - > Fog Seal (FS)

- Customers Districts, Central Office Design and Construction
- Selection of suitable site within FDOT project for the construction of:
 - one or more test sections utilizing the experimental design(s) and/or material(s), and
 - one or more control sections utilizing the standard design and/or material

Main factors considered in test site selection:

- Adequate truck traffic and pavement design to yield significant results within a reasonable time-frame
- Adequate test/control section length (minimum 1,500 ft per section) with suitable horizontal and vertical alignment
- Uniform subsurface and suitable surface conditions

Process

Project

updates

performance

• Start performance monitoring

ID	Project	Туре	District	County	SR	Age
1	79060_PPPCP_SR600	Е	5	Volusia	600	6
2	51010_SR30_PP	S	3	Gulf	30	7
3	79002_ULTFUSE_SR9	S	5	Volusia	9	2
4	79110009_ULTFUSE_SR472	S	5	Volusia	472	1
5	79110010_ULTFUSE_SR472	S	5	Volusia	472	1
6	55080_SR20_OGCR	S	3	Leon	20	7
7	50010_SR10_CR	Е	3	Gadsden	10	10
8	53020_SR10_HP	S	3	Jackson	10	3
9	50030_SR10_HP	S	3	Gadsden	10	3
10	26005_SR222_MICRO	S	2	Alachua	222	6
11	14120_SR52_OGCR	S	7	Pasco	52	4
12	70022_SR508_FDR	Е	5	Brevard	508	4
13	10040_SR45_HP	S	7	Hillsborough	45	3
14	13020_SR43_RCA	E	1	Manatee	43	8
15	75471_SR528_RCA	Е	5	Orange	528	0
16	27090_SR8_BFC	S	2	Baker	8	12
17	93130_SR15_GEOSYN	Е	4	Palm Beach	15	2
18	34050_SR55_FC_Q	S	2	Levy	55	9
19	34070_SR24_SAM	S	2	Levy	24	4
20	08010_SR45_OGCR	S	7	Hernando	45	5
21	58030_SR30_ULTFUSE	S	3	Santa Rosa	30	5
22	16030_SR35_FOGS	S	1	Polk	35	11
23	16170_SR25_FOGS	S	1	Polk	25	11
	Total Active Projects		D1/D7	6		\neg
Active Experimental (E)		6	D2	3		
Active Special (S)		17	D3	6		
			D4	1		
			D5	6		

Projects Performance

Pavement Preservation (PP)

Evaluate the effectiveness of different pavement preservation techniques to extend pavement life and serviceability

County: Gulf

Project Number: 51010

Fin No.: 426957-1-52-01

Road Number: SR30/US 98

Completed: 2012

LANE(S)		R1, L1		
Test Section No.	Beginning Milepost	Ending Milepost	Description	length (mile)
S1	8.744	9.033	FC3, CONTROL (NO RESURFACING)	0.289
S2	9.033	9.318	MICRO-SURFACING	0.285
S3	9.318	9.611	FC 4.5, 1/2" OVERLAY	0.293
S4	9.611	9.900	FC 4.5, 3/4" OVERLAY	0.289
S5	9.900	10.189	FC 9.5, 1" OVERLAY	0.289
S6	10.189	10.478	FC 9.5, 1" OVERLAY, W/1" MILLING	0.289
S7	10.478	10.767	FC 12.5, 1.5" OVERLAY, W/1.5" MILLING	0.289
S8	10.767	11.056	BONDED FRICTION COURSE	0.289
S9	11.056	11.345	FC3, CONTROL (NO RESURFACING)	0.289

Bonded Friction Course was most effective treatment in controlling cracking

FC 9.5 overlays were more effective in controlling rutting

FC 4 and BFC were most effective in preserving smoothness

Micro-surfacing treatment had the smallest drop in Friction

Projects Performance

Evaluate the effectiveness of different crack relief techniques to mitigate reflective cracking of asphalt

- Thermal
 - Horizontal movement of PCC slabs initiates bottom-up reflective cracking
 - Curling of PCC slabs initiates top-down reflective cracking
- Load
 - Differential vertical movement of adjacent joints propagates reflective cracking

- R1 and L1 originally constructed with PCC in the 1920's
- Several rehabilitations and widening
- Experienced significant reflective cracking

- Five test sections were built in R1 and L1
- Each section was ~ 1500 feet
- Each section received a different AC overlay type and thickness on top of existing AC and PCC base

Not to scale

1.0" FC-9.5

1.5" SP-12.5

0.5" Overbuild

AC

1.5" SP-12.5
AC
PCC

1.0" FC-9.5

1.0" FC-9.5

2.5" SP-12.5

AC

PCC

1.0" FC-9.5 1.5" SP-12.5 1.0" OGCR AC PCC

1.0" FC-9.5 1.5" SP-12.5 0.5" ARMI AC PCC

Section 1 (0.5"Overbuild)

PCC

Section 2 (1.5" SP-12.5)

Section 3 (2.5" SP-12.5)

Section 4 (1.0" OGCR)

Section 5 (0.5" ARMI)

S2 (1.5" SP 12.5) had the least transverse cracks; S5 (1.5" SP 12.5 + 0.5" ARMI) had the most cracks

S1 (1.5" SP12.5) had the highest smoothness

Projects Performance

High Polymer (HP)

County: Gadsden

Project Number: 50030

Fin No: 422151-1-72-60

Road Number: SR10/US 90 (Midway)

Trucks: 9.2%

Completed: 08/2015

- Westbound outside travel lane (L2) at I-10 interchange
 - Located between two truck stops
 - Rutting over 2 inches in some areas
- Programmed to be reconstructed with PCC
- Resurfaced top 2.5" with single lift of FC12.5 containing HP
- PCC reconstruction was postponed

Source: H. Moseley - US 90 HP Pilot Project

HP binder was effective in controlling rutting

Projects Performance

Quiet Pavement (FCQ)

Completed: 2010

- FDOT has been actively involved in the FHWA Quiet Pavements Pilot Program
- Two FCQ sections were designed to produce less tire/pavement noise than the traditional FC5
- FCQ is essentially a FC5 surface with different aggregate characteristics

Beginning Milepost	Ending Milepost	Test Section
26.798	27.598	FC5 CONTROL
27.598	28.393	FCQ ARB-12
28.393	29.229	FCQ PMA

FCQ with ARB-12 is more effective in reducing tire-pavement noise

Projects Performance

County: Polk

Project Number: 16030, 16170

Fin No: 197647-3-52-01, 197368-3-52-01

Road Number: SR 35/US17, SR25/US27

Completed: 2009

FS Placement: 04/2013

- The functional purpose of an OGFC is to reduce hydroplaning by increasing pavement texture and porosity
- The porous texture of an OGFC exposes the thin film of asphalt on the aggregate to heat, air, UV radiation and moisture, causing the binder to oxidize and harden
- This oxidative hardening makes the binder more brittle, and less fatigue resistant, which ultimately results in cracking and raveling.

- Application of a fog seal (FS) can prevent an OGFC from raveling by increasing the binder film on the aggregate particles and subsequently reduce the oxidative hardening
- FDOT placed three (3) different FS test sections on two projects in Polk County to evaluate the potential of this preventive maintenance technique

To al Caration	Desemble	Spread Rate (gal/yd²)		
Test Section	Description	SR35/US17	SR25/US27	
CNTRL 1	FC5 (no FS treatment)	-	-	
FS E	emulsion with polymer, rejuvenator and emulsifier	0.10	0.10	
FS A	clay stabilized, mineral filled emulsion	0.07	0.13	
FS R	maltene based emulsion of petroleum oils and resins	0.04	0.07	
CNTRL 2	FC5 (no FS treatment)	-	-	

FS E treatment has the best overall cracking performance

No difference in raveling among FS and control sections

FS E treatment had the least impact on friction

Thank You!

For additional information contact:

Nour Nazef Abdenour. Nazef @dot.state.fl.us (352) 955-6322