

UNSW Centre for Health Informatics

Prospective Biosurveillance for Early Detection of Disease **Outbreaks**

Authors:

- Mahmood Akhtar#
- Blanca Gallego
- Andy Yi-Chih Shiue
- Vitali Sintchenko

Outline

- Background
 - Scan Statistic
 - Prospective Disease Surveillance
 - Elements of the Problem
 - Kulldorff's SSS
 - Bayesian SSS
- Simulation Results
- Summary

Background

Scan Statistic

- To detect a local excess of events
- Naus JI, (1965)
- Main idea:
 - $\cdot [a, b]$: win[t, t + w] $\rightarrow w < b a$
 - · For all 't': record the maximum number of events in the window, and compare to its distribution under the null hypothesis of a purely random Poisson Process
- Scope: detect disease clusters, use in brain imaging, astronomy, etc

Prospective Disease Surveillance

- Objective: detect spatial clusters of disease cases resulting from disease outbreak
- Surveillance on daily basis, with the goal of finding emerging epidemics as quickly as possible.
- Given data: no. of cases, spatial locations,
- Rely on related observable quantities such as no. Of ED visits or OTC drug sales

Elements of the Problem

- Daily data collected for a set of spatial locations s_i
- At each s_i , we have a count c_i , and an underlying baseline b_i
- Goal: to find if there is any spatial region S (set of locations s_i) for which counts are significantly higher than expected, given the baseline
- The set of all regions *S* in grid *G* is searched

Cluster Detection: two main goals

- To pinpoint the location, shape and size of each potential cluster
- To determine (test) if a potential cluster is likely to be a "true" cluster or chance occurrence

"We compare the null hypothesis H_0 of no clusters against some set of alternative hypotheses $H_1(S)$, each representing a cluster in some region or regions 'S' subset of "*G*"

Kulldorff's SSS (M Kulldorff, 1997)

- One of the most important statistical tool for cluster detection
- Searches over a given set of spatial regions, finding those regions which maximize a LR statistic
- Statistical significance determined through randomization testing, very time consuming, computationally infeasible for large datasets
- Other issues: no use of prior information, highly dependent on the MLE

- Bayesian SSS (DB Neil et al., 2006)
 - Uses prior information about size and shape
 - More flexible, less prone to overfitting
 - Increased power to detect clusters and much faster runtime (randomization testing is no more required)
 - Testing via posterior probabilities of each potential cluster
 - Complexity of $O(N^4)$ vs. $O(RN^4)$

Simulation Results

Methods

- Bayesian SSS: implemented in Java
- Simple exact algorithm (D Agarwal et al., 2006): underlying spatial scan for Bayesian model

Datasets

- Spatial locations: 79 postcodes of Sydney
- Real Salmonella outbreaks: training set
- Simulated spatiotemporal outbreaks: testing set, generated using Matlab / SAS packages
- Evaluation measure: AMOC (Fawcett & Provost, 1999)

Simulated Outbreaks

AMOC Analysis

Simulated Outbreaks

AMOC Analysis

Summary

- Bayesian SSS model was implemented prospective biosurveillance
- True outbreaks were used for estimation of model parameters
- Simulated outbreaks were used performance measurement using AMOC curves
- Overall, the accuracy and timeliness results of this initial evaluation are encouraging
- Further testing on more diverse simulated and real outbreaks is required

