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The emerging genome sequencing technologies and bioinformatics provide 
novel opportunities for studying life-threatening human pathogens and to 
develop new applications for the improvement of diagnosis and treatment of 
infections. 
Sequenced genomes of bacteria are doubling approximately every 20 
months, however, their high-quality comparative genomic analysis depends 
on the availability of adequate methods [1]. 
The existing multiple sequence alignment (MSA) methods are mostly 
progressive and iterative. However, most of them suffer from significant 
biases as they assume minimum percent identity of approximately 40% for 
proteins and approximately 70% for DNA sequences [2,3].
The objective of this study is to test a new MSA algorithm “mmDst” and to 
analyse its suitability for the high-throughput comparative analysis of different 
microbial genomes. 
We have used the clinically relevant task of identifying regions that determine 
resistance to antibiotics to test the “mmDst” and to compare its performance 
with established methods.

Introduction
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Alignment of antibiotic resistance determining regions:
Regions of similarity or dissimilarity between a set of sequences, obtained from 
pathogens with known resistance or susceptibility to antibiotics (quinolones) were 
explored. 
Quinolone resistance has been studied extensively in many different bacterial species 
and is usually due to single point mutations in the target of these drugs, DNA gyrase. 
Resistance mutations most often occur within a stretch of 50 nucleotides, the so called 
“quinolone-resistance determining regions” (QRDRs), which are located in the genes for 
the A subunits of the enzyme gyrA gene [4]. 
The resistance mutations in gyrA codons 84 or 88 usually lead to the high-level in vitro 
resistance but other mutations can also infrequently occur.

The quality of the alignment is assessed using the following scores:
Sum of Pairs Score is usually used to assess the performance of MSA methods. This 
score increases as the program succeeds in aligning more matching residues in each 
column in the final alignment, with minimum gap insertions all over, assuming statistical 
independence between columns [14]. 

[4] Friedberg EC, Wagner R, Radman M, Specialized DNA polymerase[4] Friedberg EC, Wagner R, Radman M, Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 2002s, cellular survival, and the genesis of mutations. Science 2002;296:1627;296:1627--30.30.
[14] Pevsner J. Bioinformatics and functional Genomics. John Wil[14] Pevsner J. Bioinformatics and functional Genomics. John Wiley, New York, 2003.ey, New York, 2003.

Definitions



Definitions – Cont’d
Assessment scores continued:

Shannon entropy is a simple quantitative measure of uncertainty in a data set. In the 
context of drug resistance as conferred from single mutations, knowledge of the 
frequencies of different amino acids in the mutation position as drawn from resistant 
and sensitive populations, will enable us to guess the amino acids responsible for 
the resistance. This is because these amino acids were certain (low entropy) in the 
sensitive population, versus the uncertain (high entropy) in the resisting population 
[15]. 

To identify the exact start and end of the regions of highest and lowest 
column scores in the alignment, a simple method was implemented. The 
alignment was scanned for all regions of width = 2 * the window size used in 
the plots of the results section. Using the sum of pairs scores generated in 
Table 1, every region was given a score using the following average 
function: 

Average Region score = sum( ci) / (Window Size)
where ci is the column sum of pairs score using the identity matrix for each 
column i within the region. 

[15] http://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy_re[15] http://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy_readme.htmladme.html



Sources of data
The set of gyrA gene sequences were extracted from following microbial 
genomic data available in the GenBank: 

Mycobacterium tuberculosis (NCBI Accession Number NC_000962, sequence 
length 2518bp); 
Mycobacterium kansasii (NCBI Accession Number Z_68207, sequence length 
1648bp); 
Staphylococcus aureus MSSA476 (NCBI Accession Number NC_002953, sequence 
length 2665bp); 
Mycoplasma pneumoniae (NCBI Accession Number NC_000912, sequence length 
2443bp); 
Clostridium difficile (NCBI Accession Number NC_009089, sequence length 2521b); 
Treponema pallidum (NCBI Accession Number NC_010741, sequence length 
2428bp). 

Gene sequences of M.tuberculosis, M. kansasii and Staphylococcus aureus 
MSSA476 were grouped as quinolone susceptible. 
Gene sequences of Treponema pallidum, Clostridium difficile and 
Mycoplasma pneumoniae were classified as resistant to quinolone thus 
potentially harbouring changes in the gyrA gene.



High Performance new MSA Method
We developed a new high performance simultaneous MSA 

method with the characteristics:
It is based on the multi-dimensional dynamic programming 

optimal algorithm.
It employs simultaneous alignment of all sequences using novel 

scoring recurrence:
The score of one cell is the maximum value of the 2k-1 neighbours’

temporary scores, which is calculated as the sum of pair wise scores of all 
residues in the sequences corresponding the decremented index elements 
from the current cell index to the neighbour index, plus the multiplication of 
the gap score by the number of un-decremented index elements.

The scoring tensor is partitioned to run in parallel on a computer 
cluster or a multi-core architecture [5,6]. 
The mmDst method was tested on small HPC machines and 

one SGI Altix cluster of maximum 64 nodes. The processor 
scalability reduces the execution time as more processors were 
employed to achieve the minimal communication cost, and high 
data locality



Methodology
The MSA is organised in the following steps:

Multiple sequence alignment of the first set of sequences (sensitive to antibiotics) to 
derive a consensus sequence, or a profile of the known behaviour. 
Align the sensitive consensus to the highest resistant sequence “Treponema pallidum”
to identify major differences.
Align a set of resisting sequences and derive their consensus sequence,
Align the consensus of the sensitive sequences to the consensus of the resisting 
sequences to identify the regions of similarity and dissimilarity (visually or calculated 
from the scores) of both profiles.

The mmDst method was compared to existing MSA heuristic methods such as 
CLUSTAL W [7], MUSCLE [8], TCoffee [9], Kalign [10] and MAFFT [11], using 
the EBI web site [12]. These methods are based on pair-wise alignments, which 
are proven to be less sensitive than simultaneous alignments [13].

[7] Thompson JD. CLUSTAL W, improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific 
gap penalties and weight matrix choice. Retrieved from http://wwwbimas.cit.nih.gov/clustalw/clustalw.html.
[8] Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 2004;32(5):1792-97.
[9] O'Sullivan O, Suhre K, Abergel C, Higgins DG, Notredame C. 3DCoffee: Combining Protein Sequences and Structures within Multiple Sequence 
Alignments. J Mol Biology 2004;340:385-95.
[10] Lassmann T, Sonnhammer ELL. Kalign, Kalignvu and Mumsa: web servers for multiple sequence alignment. Nucleic Acids Res 2006;34: W596- 
W599. 
[11] Kazutaka K, Hiroyuki T. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. 
BMC Bioinformatics 2008;9:212.
[12] http://www.ebi.ac.uk/Tools/sequence.html
[13] Perrey SW, Stoye J, Moulton V, Dress A W M. On simultaneous versus iterative multiple Sequence Alignment [Report]. Bielefeld, Germany: 
Forschungsschwerpunkt Mathematisierung, University of Bielefeld, 1997.



Methodology – Cont’d

The system was implemented on a SunFire X2200 with 2xAMD Opteron quad 
processors of 2.3 GHz, 512 Kb L2 cache and 2 MB L3 cache on each
processor, and 8GB RAM. The sequences were aligned on a reduced search 
space factor “Epsilon” equals 1, which represented 0.21% of the search 
space for the sensitive sequences and 0.19% of the resisting sequences. The 
following penalties were applied: gap opening = -4, gap extension = -2, 
mismatch score = -1, and match score = 1.

[5] Helal M, Mullin LM, Gaeta B, El[5] Helal M, Mullin LM, Gaeta B, El--Gindy H. Multiple sequence alignment using massively parallel maGindy H. Multiple sequence alignment using massively parallel mathematics of arrays. In: Proceedings of the International thematics of arrays. In: Proceedings of the International 
Conference on High Performance Computing, Networking and CommuniConference on High Performance Computing, Networking and Communication Systems (HPCNCScation Systems (HPCNCS-- 07). Orlando, FL. USA, 2007. PP. 12007). Orlando, FL. USA, 2007. PP. 120--7.7.
[6] Helal M, El[6] Helal M, El--Gindy H, Mullin LM, Gaeta B. Parallelizing Optimal Multiple SequGindy H, Mullin LM, Gaeta B. Parallelizing Optimal Multiple Sequence Alignment by Dynamic Programming. In: Proceedings of the ence Alignment by Dynamic Programming. In: Proceedings of the  
International Symposium on Advances in Parallel and Distributed International Symposium on Advances in Parallel and Distributed Computing Techniques (APDCTComputing Techniques (APDCT--08) held in conjunction with 2008 IEEE International 08) held in conjunction with 2008 IEEE International 
Symposium on Parallel and Distributed Processing with ApplicatioSymposium on Parallel and Distributed Processing with Applications (ISPAns (ISPA--08), Sydney, Australia, December 1008), Sydney, Australia, December 10--12 2008. PP. 12012 2008. PP. 120--7.7.



Sensitive Seq Resistant Seq Sen & TP Sen & Res Cons
mmDst 339 2231 849 1582
MUSCLE 439 3216 640 1123
TCoffee 443 2881 520 1025
CLUSTAL W 222 1966 478 1469
Kalign -1593 -716 -285 1389
MAFFT -3647 -4712 -1670 -2114

Sensitive Seq Resistant Seq Sen & TP Sen & Res Cons
mmDst 23869.74 27932.28 15362.36 15430.20
MUSCLE 26855.33 25144.80 16815.42 17264.06
TCoffee 27246.99 25682.06 17355.43 17797.34
CLUSTAL W 28362.00 28240.50 17753.33 18836.40
Kalign 33336.24 34849.35 21156.91 22011.64
MAFFT 37834.49 40707.34 26597.46 37938.70

Table 1: Sum-of-Pairs Sores for the alignments produced by the different methods for the Sensitive 
Sequences Alignment, Resistant Sequences Alignment, Sensitive Sequences Consensus Alignment 
with the most resisting sequence "Treponema pallidum”, and Sensitive Sequences Consensus and 
Resistant Sequences Consensus Alignment.

Table 2: Entropy value for the aligments produced by the different methods for the Sensitive  
Sequences Alignment, Resistant Sequences Alignment, Sensitive Sequences Consensus Alignment 
with the most resisting sequence "Treponema pallidum”, and Sensitive Sequences Consensus and 
Resistant Sequences Consensus Alignment.

Results



The similarity regions plots shown in Figure 1 are generated by plotcon tool averaged on a 
window size of 100 base pairs. The different alignment methods used show different areas of 
similarity (regions where the y-axis score is higher) and dissimilarity (regions where the y-axis 
score is lower), according to the SP score of the columns corresponding to the 100 base pairs 
averaged on the x-axis. 

a) b) c)

d) e) f)

Figure 1: Similarity Regions Plot (averaged on 100 bp on the x-axis as relative residues positions) of 
the alignment (measured by the SP score on the y-axis) of the consensus sequence of the sensitive 
sequences with the most resisting sequence "Treponema pallidum" using the six different methods: a) 
mmDst, b) MUSCLE, c) TCoffee, d) CLUSTAL W, e) Kalign, f) MAFFT.



Results – Cont’d

Sensitive consensus sequence 
& the "Treponema pallidum" 

Alignment

Sensitive consensus sequence 
& the resisting consensus 

sequence alignment
Score From To Score From To

mmDst Highest 0.64 151 351 0.80 272 472
Lowest 0.07 2167 2367 0.33 1567 1767

MUSCLE Highest 1.03 450 650 1.11 356 556
Lowest -0.83 2375 2575 -0.89 2668 2868

TCoffee Highest 1.06 233 433 1.15 430 630
Lowest -0.98 2495 2695 -0.36 2737 2937

CLUSTAL W Highest 0.98 233 433 1.05 292 492
Lowest -0.25 2176 2376 0.18 2589 2789

Kalign Highest 0.54 135 335 0.90 3265 3465
Lowest -0.54 3253 3453 -0.17 0 200

MAFFT Highest 0.52 101 301 0.58 3915 4115
Lowest -1.72 2654 2854 -2.00 427 627

Table 3: Highest and Lowest (maximum and minimum Sum-of-Pairs scores respectively) Regions 
(as identified in the “From” base pair number “To” base pair number) of Similarity or 
Dissimilarity in the alignment of the sensitive sequences consensus sequence and the "Treponema 
pallidum" sequence as per alignment method in the left hand side columns, and the sensitive 
sequences consensus sequence and resisting sequences consensus sequence alignment.



The mmDst algorithm successfully identified QRDRs and handled sequences 
of different length. The gyrA gene of intrinsically quinolone-resistant 
Treponema pallidum demonstrated significant dissimilarity from gyrA genes 
sequences obtained from quinolone susceptible organisms of Mycobacteria 
(Figure 1).  The details are as follows:

Table 1 shows that “mmDst” score came third after TCoffee and MUSCLE in the first 
two cases, where similar sequences were aligned. Since these are progressive 
methods based on pair-wise alignments and building a guide tree based on an 
objective function, they work well with sequences of assumed similarity of 90%. 
However, in the third case where the consensus sequence of the alignment of the 
sensitive sequences were aligned with the most antibiotic resistant sequence which 
is  “Treponema pallidum”, mmDst score came second after MUSCLE. 
In the fourth case, which is the alignment of the consensus sequence of the set of 
sensitive sequences with the consensus sequence of the set of resisting sequences, 
mmDst scored the highest over all other methods. 
Aligning the profiles of both families revealed a better visual identification of the 
similar and dissimilar regions, rather than the alignment of one sequence 
representative of one family to the consensus of the other.

These findings demonstrate that mmDst scores better than other heuristic 
methods, when aligning sequences of large dissimilarity, and can identify 
regions of high dissimilarity along the full length of the input sequences; a 
feature that can reveal more information about genes responsible for specific
clinical phenotypes. 

Conclusion
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