Highlights

The most 2.5D & 3D Content Under One Roof:
- Featuring 3D Keynotes from Micron, CNSE, and TEL NEXX, and Panel Discussion on “What is Preventing 3D IC Integrations from High Volume Manufacturing?”
- 6 “Best of Track” Outstanding Paper Awards & 1 “Best of Symposium”
- Tuesday Keynote from Fraunhofer IZM and Wednesday Keynote from GLOBALFOUNDRIES
- Monday & Thursday: 17 Professional Development Courses
- 30 sessions featuring more than 180 papers

Expanded Exhibits Tuesday-Wed. ONLY
- (Thursday tear-down)
- NEW “Research Lab Corridor” on Exhibit Floor
- University Poster Session
- NEW GBC Market Forum Luncheon featuring keynote & market analysts
- Dessert “Happy Hour” in the exhibit hall on Tuesday afternoon
- Exhibitor Slideshows & Advertisements outside the session rooms
- Exhibit Hall Reception Wednesday evening
PROVEN RELIABILITY. TRUSTED PERFORMANCE.

Thick & Thin Film Resistor Products
- Faithful scheduled deliveries under 2 weeks
- Values from 0.1 Ohm to 100G Ohm
- Abs. tolerance to ±0.005%, matching to ±0.0025%
- TCR’s to ±2ppm/°C, tracking to ±1ppm/°C
- Operating frequencies to 40GHz
- High performance at cryogenic temperatures
- Case sizes to 0101
- Space level QPL’s, F.R.-“S”, per MIL-PRF-55342
- Zero failures with over 200 million life test hours
- ISO 9001:2000 certified
- Full line of RoHS compliant products
- 24-hour quote turnaround

Electronic Package Products
- Hi Reliability Hermetic Packages:
 - Lightweight glass sidewall flatpacks
 - Metal flatpacks, leadless chip carriers (LCC) and ceramic quad flatpacks (CQFP)
 - Surface mount and plug-in packages
- Hermeticity per MIL-STD-883, Method 1014, Condition A4 (greater than 10⁻⁸ atm cc/sec)
- Plating per MIL-DTL-45204 and QQ-N-290 for standard packages
 (unless otherwise specified)
- Custom design available
- RoHS and DFARS compliant

When it comes to today’s military, aerospace, and medical applications, the performance requirements of electronic components have never been so demanding. By delivering superior-quality products for over forty years, it’s easy to see why Mini-Systems is the supplier of choice among design engineers.

44 YEARS OF EXCELLENCE
Welcome from the General Chair .. 3
Welcome from the Technical Chairs ... 4
Opening Ceremonies and Awards .. 6
Thank You to Our Sponsors ... 7
Industry Tour at Micross Components 8
Professional Development Courses 10-21
Exhibit Floorplan .. 22
Don’t Miss What’s Happening in the Hall! 23
2013 Exhibitor Directory .. 24-36
Products and Services Directory ... 37-39
Symposium Committee .. 40
Technical Program at-a-glance ... 41
Technical Program .. 42-59
Tuesday Keynote: Fraunhofer IZM .. 44
Student Poster Session .. 45
Wednesday Keynote: GLOBALFOUNDRIES 50
GBC Fall Marketing Forum ... 51
3D Keynotes & Panels .. 54-55
Natel’s First Annual Supplier of the Year Awards 59
2013 Student Symposium .. 60
Orlando Area Map .. 62
Orlando Theme Parks, Discount Disney Tickets and Other Area Attractions ... 63
Upcoming IMAPS Events .. 64
IMAPS 2014 - San Diego .. 65

Professional Development Courses (PDCs):
Monday, September 30: full-day courses, running 9:00 am - 5:00 pm;
Two half-day courses (8:00am - 12:00pm & 1:00 pm - 5:00 pm)
Thursday, October 1: all half-day courses, running 8:00 am - 12:00 pm

Registration:
Grand Ballroom Foyer
Monday, September 30 -- 7:00 AM - 5:00 PM
Tuesday, October 1 -- 7:00 AM - 6:00 PM
Wednesday, October 2 -- 7:00 AM - 6:00 PM
Thursday, October 3 -- 7:00 AM - 3:30 PM

Technical Sessions:
Tuesday, October 1 -- 8:00 AM - 6:35 PM
Wednesday, October 2 -- 8:00 AM - 6:05 PM
Thursday, October 3 -- 8:00 AM - 4:10 PM

Exhibition:
Grand Ballroom
Monday, September 30 -- SET-UP ONLY: 9:00 AM-6:00 PM
Tuesday, October 1 -- 11:00 AM - 5:00 PM
Wednesday, October 2 -- 9:00 AM - 7:30 PM
Thursday, October 3 -- MOVE-OUT ONLY: 8:00 AM - 2:00 PM

Photo Release
Photographs will be taken at the IMAPS 2013 Symposium. By registering for this meeting, you agree to allow IMAPS to use your photo in any IMAPS-related publications or website.

Loss Due to Theft
Symposium management is not responsible for loss or theft of personal belongings. Security for personal belongings is the responsibility of the individual.

Welcome from the General Chair
Welcome from the Technical Chairs
Opening Ceremonies and Awards
Thank You to Our Sponsors
Industry Tour at Micross Components
Professional Development Courses
Exhibit Floorplan
Don’t Miss What’s Happening in the Hall!
2013 Exhibitor Directory
Products and Services Directory
Symposium Committee
Technical Program at-a-glance
Technical Program
Tuesday Keynote: Fraunhofer IZM
Student Poster Session
Wednesday Keynote: GLOBALFOUNDRIES
GBC Fall Marketing Forum
3D Keynotes & Panels
Natel’s First Annual Supplier of the Year Awards
2013 Student Symposium
Orlando Area Map
Orlando Theme Parks, Discount Disney Tickets and Other Area Attractions
Upcoming IMAPS Events
IMAPS 2014 - San Diego

Platinum Premier Sponsor: NATEL
Gold Premier Sponsor: Heraeus
Silver Premier Sponsor: METALOR®
Thick Film technology has been an elemental force in the evolution of microelectronics for decades. Heraeus Thick Film Materials has been a critical partner in this progress. As the industry has evolved, Heraeus has been instrumental in developing the products to enable the progression of the technology. Heraeus’ global presence and in-depth understanding of the market and technology allow us to develop customer solutions for almost any application. Our state-of-the-art technical service laboratories ensure that these solutions work in each customer’s unique processes. It’s no wonder why our products are found in such diverse range of electronics applications and why our customers consider us their preferred partner.
Welcome from the General Chair

It’s my honor to be this year’s General Chair for the IMAPS 46th Annual International Symposium on Microelectronics. Thank you for joining us September 30th to October 3rd at the Rosen Centre Hotel in Orlando, Florida. IMAPS 2013 promises to be a special event with a strong technical program, and a large array of technology and manufacturing vendors at the exhibition hall.

The IMAPS committees and many dedicated volunteers have enhanced the 2013 program with exciting new features that provide added international flavor, and more learning and growth opportunities for you and your business. New on the 2013 program are a Research Center corridor in the Exhibit show floor, a full 3-day track on 2.5D/3D packaging, and expanded opportunities for students. We will also have an outstanding lineup of Professional Development Courses and an expanded roster of market presentations at the Global Business Council Forum.

This year’s Technical Chairman, Ivan Ndip, has organized a team of co-chairs and session chairs for IMAPS 2013 and generated a strong program that will feature more than 180 technical papers on the latest research, development, and product advances. The technical program is organized into 6 parallel tracks and 30 sessions covering Advanced Packaging & Assembly, International Packaging and System Integration, 2.5D/3D Packaging, Modeling/Design/Test/Reliability, New Materials & Processing, and Emerging Technologies. Keynote speakers will be highlighted on each day of the symposium, and three keynotes and a panel on 2.5D/3D packaging technology will provide expert insights on the latest advances in this emerging field.

Be sure to visit the more than 125 exhibitors who will showcase a vast array of new products serving all segments of the microelectronics industry, including Military, Aerospace, Consumer, Mobile, Biomedical, Computing, Automotive/Industrial, and Alternate Energy to find out the latest and greatest solutions to your needs in the supply chain.

University students will have an opportunity to showcase their research and win prize money in a Student interactive poster session. And the IMAPS outreach program will facilitate a program with local high school students, giving students a chance to see what the microelectronics industry is all about.

To round out the activities, a fun golf tournament at Shingle Creek Golf Course will be held to help us on the “all work and no play” front.

It’s been my pleasure to work with a diligent and steadfast organizing committee and IMAPS staff and a robust team of volunteers and co-chairs. They have assembled a superb program that truly brings the entire electronics supply chain together and I can’t think of a better place to stay in tune than at IMAPS 2013 in Orlando. I encourage you take some time from your busy schedule to attend IMAPS 2013, to learn about a diverse scope of technology advancements, meet and collaborate with your peers, and create a network of new contacts from all over the world!

Thank you for joining us this week!

Matt Nowak
Qualcomm Technologies, Inc
mnowak@qti.qualcomm.com
Welcome from Technical Chairs

Thank you for joining us in beautiful Orlando, Florida on September 30 – October 3, 2013 for the 46th International Symposium on Microelectronics (IMAPS). The annual IMAPS Symposium is well recognized as one of the premier international conferences for learning the latest advancements throughout the microelectronics packaging supply chain. This year, the Technical Program includes more than 30 technical sessions organized into 6 parallel tracks, plus keynote addresses, panels, and student activities. For the first time ever, the final manuscripts of the symposium will be peer-reviewed by the IMAPS Technical Committee. A Research Laboratory Corridor program is also introduced this year. This program provides an opportunity to promote cutting-edge research, fosters an expanded global network of collaboration between industry and R&D centers, and generates contacts for exploring technology transfer from the laboratories to the commercial, private and government sectors.

In addition to two days of Professional Development Courses, here is just a sample of the highlights for this year’s symposium:

- Top Keynote speakers from industry and academia
- Full three-day track of special sessions presenting global perspectives of advanced packaging and system integration, including invited papers from Europe, Asia, and the USA
- Full three-day track on interposers and 2.5D/3D packaging technology, including sessions on TSV materials and processes, glass interposers, technologies and methods for 2.5/3D packaging and integration, Advanced Platform Integration, and Packaging Transitions for 2.5D and 3D Interconnect.
- New sessions on Medical device packaging and on “Think Thin” packaging
- Lively panel sessions with industry experts for hot topic discussions on 3D packaging
- Engaging student posters session and numerous other student activities
- Sessions to update us on the latest developments in package modeling, design, and reliability including design for reliability, testing techniques, reliability results, thermal management, signal integrity, and high performance interconnect
- Full three-day track on advanced packaging materials including polymers, ceramics, encapsulants, and bonding materials
- The latest advances in Pb-free solder, flip chip, wafer bumping, copper pillars, wirebonding, and printed electronics
- Practical insights on packaging applications including Microwave/RF, MEMS, optoelectronics, and LEDs
- Research lab corridor on the exhibitor floor in which leading research institutions around the globe will be presenting their latest research results and future technology trends
- Lots of awards including 6 “Best of Track” outstanding paper awards, 1 “Best of Symposium” award and student awards for best papers, booth and poster presentations

We gratefully acknowledge and extend sincere thanks to the IMAPS Technical Committee and IMAPS staff for their outstanding contribution to the 2013 program. We look forward to four days of creativity, innovation and networking.

Ivan Ndip, Fraunhofer IZM ivan.ndip@izm.fraunhofer.de

Technical Co-Chair - USA: Mark Hoffmeyer IBM Corporation
Technical Co-Chair - Europe: Andre Rouzaud CEA LETI
Technical Co-Chair - Asia: Jin Yu Korea Advanced Institute of Science and Technology (KAIST)

Assistant Technical Co-Chair - USA: Erica Folk Northrup Grumman
Assistant Technical Co-Chair - Europe: Gilles Poupon CEA LETI
Technical Co-Chair - Asia: Woong-Sun Lee SK Hynix
LEADING GLOBAL SUPPLIER OF PRECIOUS METAL TECHNOLOGY

EXCELLENCE IN PRECIOUS METALS

A symbol of credibility and reliability

- International Swiss-based group with subsidiaries in 17 countries
- Over 150 years experience in precious metals
- Product stability, the guarantee of customer reliability
- High-quality precious metals for high-tech products
- Technical service and on-site support throughout the world
- Certified quality to highest international standards

Metalor offers a global service from sales to recycling

Advanced Coatings
Leading edge solutions in plating, powders, flakes, chemicals and compounds

Refining
Evaluation and refining, ingots and bars

Electrotechnics
Silver and pseudo-alloy electrical contacts

Technology Products
Innovative products from research to large scale production

METALOR®
Opening Ceremonies & Awards

Monday, September 30, 2013
Welcome Reception
5:00 PM - 7:30 PM • Jr. Ballroom F
Rosen Centre Hotel, Orlando, Florida

Tuesday, October 1, 2013 | Opening Ceremonies:
Rosen Centre Hotel • Jr. Ballroom F
11:25 AM - 11:40 AM: Annual Business Meeting
11:40 AM - 12:00 PM: IMAPS Society Awards Ceremony

Daniel C. Hughes, Jr. Award: Sam Forman
William D. Ashman Award: John Lau
John A. Wagnon, Jr., Technical Achievement Award: Michael Osterman
IMAPS Fellow of the Society: Jin Yu; Matt Nowak; Adam Schubring; Shi-Wei “Ricky” Lee
Outstanding Educator Award: Douglas Hopkins
Sidney J. Stein International Award: Nihal Sinnadurai; Delip “Doug” Bokil
Corporate Recognition Award: Sikama International
President’s Awards: Colin Johnston; Rajen Chanchani; Peter Elenius

Best and Outstanding Papers - IMAPS 2012:
Zach Cole, Arkansas Power Electronics International
Packaging of High Frequency, High Temperature Silicon Carbide (SiC) Multichip Power Module (MCPM) Bi-Directional Battery Chargers for Next Generation Hybrid Electric Vehicles

Yiliang Wu, Xerox Research Centre of Canada
Development of Silver Nanoparticle Ink for Printed Electronics

Best Paper - IMAPS 2012:
Thomas Brunschwiller, IBM Research
Formulation of percolating thermal underfills by hierarchical self-assembly of micro- and nanoparticles by centrifugal forces and capillary-bridging

Come say Thank You to those who contributed so much to IMAPS over many years.

Keynote Presentation: 12:00 PM - 12:45 PM
Next Generation of Electronic Systems - Challenges and Solutions for System Integration Technologies
Prof. Dr. -Ing. Dr. sc. techn. Klaus-Dieter Lang - Klaus-Dieter Lang is a Professor with the School of Electrical Engineering and Computer Sciences at the Technical University Berlin, Germany, where he leads research activities in the area of Nano Interconnect Technologies. He is also the Director of the Fraunhofer Institute for Reliability and Microintegration, IZM, Berlin.
Thank You to Our Sponsors!

Premier Event Sponsors

Platinum Premier Sponsor: Natel
Gold Premier Sponsor: Heraeus
Silver Premier Sponsor: Metalor®

Corporate Sponsor

Micros Components
transforming specialty electronics

Event Sponsors

Applied Materials®
Lord Ask Us How™
Indium Corporation®
Sikama
Palomar Technologies
Plasma-Therm

Golf Sponsor

Lord Ask Us How™
Coining
Infinite Graphics
Technic Inc Engineered Powders Division
AGC
Micros Components
transforming specialty electronics

Media Sponsors

MEPTEC
US Tech
InCites
www.IDCinCites.com
Micross Components: Plant Tour

Micross Components will provide a valuable industry tour that will highlight two of their facilities in Orlando. Micross Components is a leading global provider of distributed and specialty electronic components for military, space, medical, and demanding industrial applications. Operating as a single source for high reliability and state of the art electronics, Micross™ solutions range from bare die and wafer processing to advanced and custom packaging to component modifications and related interconnect offerings. With a 35+ year heritage, Micross possesses the design, manufacturing and logistics expertise needed to support an application from start to finish. The plant tour is set for Wednesday, October 2: bus leaving Rosen Centre at 11:30am and returning by 2:00pm. Preregistration has closed. See Brian or Brianne at the registration desk for details about the tour and to meet the bus.

The Micross Tour is open to US Citizens ONLY. Students and industry professionals are welcome to participate. Micross will manage the approved attendee list and communicate with registrants as the tour approaches.
Next Generation Materials for Microelectronics

BiAgX™
- Alternative high-temperature solder paste technology
- Drop-in replacement for high Pb-containing solder paste
- Pb-free and Sb-free

LV-Series Flux Coatings
- Designed to minimize voiding
- Halide-free
- Durable for use in pick-and-place equipment

Gold-Containing Solders
- Expanded capability for complex geometries, sizes, and flatness requirements
- Extensive process knowledge
- Pure gold available

See us at Booth: 409

From One Engineer To Another®

www.indium.com askus@indium.com

ASIA • CHINA • EUROPE • USA

©2013 Indium Corporation
NEW PDC FORMAT THIS YEAR - Monday & Thursday Courses

Monday PDCs: full-day courses, running 9:00 am - 5:00 pm unless otherwise noted
All Thursday PDCs are half-day, running 8:00 am - 12:00 pm

Do you want to broaden and strengthen your skills and knowledge, optimize your manufacturing processes, and integrate the latest advances in materials and technologies to maintain your strength in today’s competitive global market? The Technical Committee of IMAPS is pleased to present a comprehensive offering of Professional Development Courses that provide detailed information on topics of immediate interest to the Microelectronics and Packaging community. So please be sure to choose from the 17 in-depth Professional Development Courses taught by recognized industry experts. You will discover the following key ways that will benefit you.

- Better understand the skills and knowledge necessary in today’s industry.
- Be exposed to the rapidly expanding developments in new materials and technologies.
- Consult with renowned authorities about your current R&D or manufacturing problems and challenges.
- Learn new ways to identify, think about, and address your problems and opportunities.
- Great opportunities to interact with industry experts and other course attendees.
- Courses now offered Monday and Thursday so you can attend a course without missing the conference or extending your travel plans!

Your PDC Registration Fee Includes:

- Lunch on the day of your course (Monday full-day PDCs only)
- Refreshment breaks
- Hard-copy workbook of course materials (no electronic copies provided)
- Attendee list following your course

PDC Cancellation policy:
IMAPS reserves the right to cancel a course if the number of attendees is not sufficient. You can transfer to a different course or we will refund you the corresponding amount.

Monday PDC Lunch sponsored by:

Heraeus
Monday, September 30, 2013
Monday PDCs run 9:00 am - 5:00 pm unless otherwise noted

PDC Coffee Break in Salon Foyer: 10:00-10:15 am
PDC Lunch in Salon 11-12: 12:00-1:00 pm
PDC Afternoon Coffee Break in Salon Foyer: 3:00-3:15 pm

PDC Coffee Breaks & Lunch sponsored by:

M1A: Plating Processes for High Rel Microelectronic Devices
PDC Instructor: Fred Mueller, General Magnaplate Corp.

1/2 Day Course (4-hour): 8am-12pm — Salon 1
Course Description: Review the engineering differences and troubleshooting problems in the plating processes used in Plating for Electronics... - Comparison of Electroless Nickel / Immersion Gold (Ni/Au), Electroless Nickel / Immersion Silver (Ni/Ag) and Electroless Nickel / Electroless Palladium / Immersion Gold (Ni/Pd/Au) processes - Presents methods for controlling the properties of plating solutions to maximize the deposits properties, including Laboratory Controls / Equipment - Electroless Nickel/Immersion Gold, Solderability and Solder Joint Reliability as Functions of Process Control - What lack of ENIG process controls can result in black pad? - Flip Chips: review of electroplated solders and golds and newer technology - electroplated copper-bumped wafers.

M1B: Fundamentals of Glass Technology and Applications for Advanced Semiconductor Packaging
PDC Instructor: Dr. TJ Kiczenski, Corning Incorporated

1/2 Day Course (4-hour): 1pm-5pm — Salon 1
Course Description: The objective of this course is to build a foundation of understanding of engineered glass as a material that technologists can leverage in the development of advanced IC packaging applications. Starting from the fundamental principles of glass structure, composition and properties we will provide a broad overview of glass with a focus on unique attributes that make glass as an enabling material. Subjects to be covered will include strength and reliability, chemical durability, thermal behavior, associated thermal relaxation behavior, and electrical properties. Additionally we will review the platform alternatives as part of the “glass toolkit” available to semiconductor packaging development including various manufacturing (melt & form) approaches, the diversity of compositional options and a survey of glass processing options that can be adapted from adjacent glass technology space to advanced semiconductor packaging. Finally the course will illustrate with case studies how glass is contributing to emerging 3D-IC technologies and explore current and potential applications in advanced semiconductor packaging. We will focus on its role as a carrier for temporary bonding, integrated wafer for CMOS Image Sensor, and 2.5D and 3D glass interposers. Relative costs of glass will be discussed as an alternative to other materials for carriers and interposers.

M2: Polymers in Electronic Packaging
PDC Instructor: Dr. Jeffrey Gotro, InnoCentrix, LLC

Salon 2
Course Description: The course will provide an overview of polymers and the important structure-property-process-performance relationships for electronic packaging. The main learning objectives will be 1) understand how polymers are used in electronic packaging, 2) learn why specific chemistries are used depending on the application 3) learn the fundamentals of polymer characterization related to electronic packaging 4) develop a foundation in rheology and rheology issues in electronic packaging.

Topics to be covered are thermosetting polymers, curing mechanisms (heat and light cured), network formation, and an overview of key chemistries used (epoxies, acrylates, polyimides, bismaleimides, curing agents, and catalysts). The course will provide a more in-depth discussion of the chemistries, material properties, and process considerations for adhesives (both paste and film), capillary underfills, packaging substrate materials, encapsulants (mold compounds), and coatings. Characterization using thermal analysis will be covered allowing understanding of structure-property relationships. The final portion of the PDC will provide an introduction to rheological characterization methods (various types of rheometers and viscometers) and the properties of adhesives (shear thinning, viscosity, time dependence, and rheology changes during curing), underfills, and mold compounds. Participants are invited to bring problems for discussion.

Salon Rooms 1-10
Professional Development Courses (PDCs)...continued

M3: Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield
PDC Instructor: Lee Levine Process, Solutions Consulting, Inc.

Salon 3
Course Description: Wire bonding is the dominant method for chip interconnection. This year the semiconductor industry will produce over 1312 (13 trillion) wire bonds. As a result of the increase in the cost of gold a significant portion (approximately 15%) of the entire market has already converted to copper ball bonding. A comparison of the costs, reliability, and difficulty of copper ball bonding will be included. The objective of the short course will be an understanding of the process from the metallurgy to process optimization and capillary selection.

- The Ball Bond Process: Step by Step Wire Bonding
- Welding
- The effect of ultrasonics on weld formation and materials properties
- Metallurgy and Intermetallics
- A comparison of the welds associated with Au-Al and Al-Cu bonding
- Au-Al failure mechanisms in ultra-fine pitch bonding
- The effect of wire alloying on ultra-fine pitch reliability
- Wire properties, testing and chemistry
- Pull and shear testing wire bonds
- Long term accelerated testing of wire bonds
- Understanding wire stiffness and the effect on looping
- Wire bond loop shapes
- The second bond
- Diffusion
- The principal bonding variables
- Capillary design and selection for optimized processes
- Simple bond screening designed experiments
- How to optimize the bonding process

M4: Technology of Screen Printing
PDC Instructors: Art Dobie, Sefar Inc.; David Malanga, Heraeus, Inc., Thick Film Division

Salon 4
Course Description: Screen printing continues to offer innovative and cost effective solutions to the increasing demands for higher circuit densities. This course is intended to increase the understanding of the screen printing process, thereby improving production yield and print quality.

Presented are some of the latest advancements in composition, screens, and printing technology that enable screen printing to meet future circuit density requirements as well as the definition required for microwave circuitry. The advantages of screen printing, an additive deposition process, are described and compared to alternative more costly and “less-green” subtractive deposition technologies. This course is applications-oriented in terms of how to optimize the screen printing process; how to use and specify screen correctly; rheology properties that affect print results; minimizing printing defects and trouble-shooting problems related to screens, inks and the printing process itself.

M5: Recent Advances and New Trends in 3D IC Integration
PDC Instructor: John H. Lau, ITRI

Salon 5
Course Description: 3D integration consists of 3D IC packaging, 3D IC integration, and 3D Si integration, which will be discussed in this lecture. Emphases are placed on the key enabling technologies for 3D IC integrations, such as TSV (through-silicon via) forming and filling, front and back-side metallization, RDL (redistribution layer), temporary wafer bonding, wafer thinning and handling, wafer de-bonding, thin chip/wafer strength measurement and improving, lost-cost lead-free microbumping (≤ 15μm pitch) and assembly, C2C, C2W, and W2W bonding, and thermal management. Useful characterization and reliability data for 3D IC integration will also be provided. The application of 3D IC integration such as MEMS, LED, logic + logic, memory + microprocessor, wide I/O DRAM, active and passive interposers will be presented. Furthermore, the critical issues of TSV and 3D IC integration will be given and some potential solutions or research topics will be recommended. Finally, the supply chains for high volume manufacturing of 3D IC integration will be discussed and several roadmaps of 3D IC integration will be provided. All the materials are based on the technical papers and books published within the past 3 years by the lecturer and others.

Salon Rooms 1-10
M6: 2013 Packaging Advances, Updates and Trends
PDC Instructor: Phillip G. Creter, Creter & Associates

Salon 6

Course Description: This NEW overview course focuses on 2013 packaging topics, reviewing leading edge developments in microelectronics advances/updates/trends. Abstracts are expanded from 2013 papers to highlight technical innovations, adding selected tables, photos, figures, conclusions, recent news reports, and organized into the following technical groups:

- 2.5D-TSV Interposers (wafer-level encapsulation, underfill, through-glass-vias using electric discharging, ultra-thin die stacking, warpage control)
- 3D-TSV (through-silicon-stack for Wide I-O, heterogeneous CoWoS, self-assembly, low-cost chip-on-chip, low temperature Cu-Cu bonding, temporary wafer bonding)
- Chip-Package-Interactions (ultra-thin chip stacking/packaging, stress testing, warpage design/control, coreless substrates)
- Flip Chip (fine-pitch/micro-pitch copper pillars, predicting electromigration reliability, large die on coreless, non-conductive adhesive for micro-pitch, thermally-enhanced FC)
- LED (very high power density, high-brightness substrate-reflectivity study, nano-composites, quasi-conformal phosphor dispensing, ultra-thin wafer-level-packaging)
- MEMS (hermetic wafer-to-wafer bonding, carrier wafer with self-assembled monolayer, outgassing, low-cost sensor, high temperature SiC MEMS)
- Microbumps (minimizing electromigration, effect of plating on microbump reliability, design rules, key elements of sub-50 um microbumps, micro-solder bumps)
- New Adhesives (Ultra-Fine-Pitch adhesives, micro-pitch interconnects using ACF, NCF wafer lamination, high-thermal conductive ACF, isotropic conductive adhesive using micro-spheres)
- Embedded Chips (microprocessor/capacitors, WLCSP, wafer/panel mold embedding, reliability, capacitor-embedded interposers)

Technical innovations presented with input from leading industrial/academic institutions: Amkor, Asahi Glass, ASE, Cisco, Fairchild, Fraunhofer IZM, Georgia Institute of Technology, Huazhong University, Hynix, IBM, IMEC, Infineon, Intel, ITRI, Kaist, NAMICS, Qualcomm, Samsung, SEMATECH, SPIL, STMicroelectronics, Sumitomo, Suss MicroTec, Taiwan Semiconductor, Tohoku University, Xilinx, Yole, others.

M7: Introduction to 3D Power Electronics & Post-Silicon Device Packaging
PDC Instructor: Dr. Douglas C. Hopkins, North Carolina State University

Salon 7

Course Description: Power densities and switching speeds in power electronics applications have increased well over ten fold in the last three years. With the advent of post-silicon power devices, i.e. SiC, GaN and GaAs, voltages and current densities are at unprecedented levels. The greatest change is in switching speeds that approach gigahertz. All this, and operating temperatures are pushing above 250C.

This course is an excerpt from a 45-hour university graduate course that introduces the evolving characteristics of the post-silicon devices; new “energy electronics” packaging materials; and new 3D printed power-packaging technologies. This daylong course presents a comprehensive approach from defining the new challenges facing power packaging to new packaging techniques for working at higher temperatures.

Half the course details more traditional power packaging techniques, such as directed-bonded-metal (Al - DBA and Cu - DBC) and limitations on their applicability to the new higher temperatures and speeds. The other half shows how microelectronics packaging technologies, such as 3D printing, and stack die and stacked boards, can be used in power applications for point of load converters, etc.

M8: Hermeticity Testing of Microelectronics for Aerospace and Medical Applications
PDC Instructor: Thomas J Green, TJ Green Associates LLC

CANCELLED

Salon Rooms 1-10
M9: Reliability Data Analysis
PDC Instructor: Jianbiao Pan, California Polytechnic State University

Salon 9
Course Description: The objective of this course is to introduce the fundamentals of reliability concepts and enable the student to analyze reliability data and interpret the results. A hands-on training using statistical software Minitab or JMP will be provided as well.

Course outline:

- Basic reliability concepts
 - The definition of reliability, MTBT, MTTF, failure rate, hazard rate, and bathtub-curve.
 - Different data types: right censored, interval censored, left censored, uncensored.
 - The most commonly used distributions in reliability engineering: exponential, lognormal, and Weibull.

- Reliability data analysis
 - Reliability distribution identification: probability plotting
 - Parameter estimation

- System reliability

At the end of this course, participants should be able to:

- Describe basic reliability concepts and bathtub-curve; distinguish reliability data characteristics; and estimate reliability terms using empirical reliability data.
- Fit statistical distributions using statistical software JMP or Minitab and interpret the failure mode based on estimated Weibull parameters.

Students are asked to bring along laptop computers with JMP or Minitab (free trial version available) to use during class.

M10: MEMS Reliability and Packaging
PDC Instructor: Slobodan Petrovic, Oregon Institute of Technology

Salon 10
Course Description: This course provides a comprehensive discussion of a broad array of MEMS packaging and reliability issues. An overview of the principles of operation, fabrication methods, and materials used in building MEMS structures will be presented as well. Because each MEMS device requires a distinctive packaging approach, practical examples and illustrations will be used to demonstrate uniqueness of solutions and interactions between micromachined structures and packaging.

A full range of MEMS devices will be discussed while a particular emphasis will be placed on sensors and actuators used in industrial, medical, and automotive applications. Extensive case studies that will be used to most effectively demonstrate diverse packaging principles for devices such as accelerometers, pressure sensors, and digital micromirror devices.

The course will be divided in 2 major sections: general MEMS competence; and packaging and reliability. The following major topics will be covered: fabrication technologies, materials, device physics, design considerations, main MEMS types, integration aspects, selected industrial application, types of packaging, quality control, reliability and failure analysis.
NEW THIS YEAR!
THURSDAY PDCs. THERE IS STILL TIME TO REGISTER FOR THE FOLLOWING COURSES...

Thursday, October 3, 2013

All Thursday PDCs are 1/2 Day Courses (4-hours): 8:00 am - 12:00 pm

10:15 AM - 10:30 AM: Coffee Break In Ballroom Foyer

T1: Package on Package Technology - What It Is, What Works, What Doesn’t Work
PDC Instructor: Dr. Ning-Cheng Lee, Indium Corporation

Salon 2

Course Description: This course covers Package on Package (PoP) Technology, including trends, designs, material selection, processes, and reliability. The approaches of enhancing the reliability will be discussed in details, including effect of fluxes, solder alloy types, processes, profiles, via designs, and ball sizes. Being the solution with the highest potential, epoxy flux will be introduced and will be compared with other solutions. Finally, head in pillow control at reflow soldering, particularly at PoP will be instructed. The control includes considerations on materials, processes, and designs.

Course Content:
- Trends
- Designs
- Processes - General
- Processes - Rework of PoP
- Processes – Selection of Dip Transfer Fluxes and Solder Pastes for PoP Assembly
- Processes - Low Volume PoP Assembly Process Development
- Processes - Design for Efficient PoP Underfilling
- Processes – Comparison of Various Polymeric Reinforcement Approaches for PoP/CSP
- Reliability - One-Pass vs Two-Pass
- Reliability - Effect of SOP & Material on Yield & Drop Test Performance
- Reliability - Effect of Materials & Profiles
- Reliability - Materials Selection & Parameter Optimization
- Reliability - Mixed Alloy
- Reliability - Effect of Coplanarity and Design
- Reliability - Effect of Ball Size, Via Size, Alloy Type on Stack-up Height & Reliability
- Reliability - Opens/Head-in-Pillow - The Primary Failure Mode of PoP

Who Should Attend? Anyone who cares about successful implementation of package on package technology, and like to know how to achieve it should take this course.

Ning-Cheng Lee is the Vice President of Technology of Indium Corporation of America. He has been with Indium since 1986. Prior to joining Indium, he was with Morton Chemical and SCM. He has more than 20 years of experience in the development of fluxes and solder pastes for SMT industries, plus experience in underfills and adhesives. He received his PhD in polymer science from University of Akron in 1981, and BS in chemistry from National Taiwan University in 1973. Ning-Cheng is the author of “Reflow Soldering Processes and Troubleshooting: SMT, BGA, CSP, and Flip Chip Technologies”, and co-author of “Electronics Manufacturing with Lead-Free, Halogen-Free, and Conductive-Adhesive Materials”. He was honored as 2002 Member of Distinction from SMTA, 2003 Lead Free Co-Operation Award from Soldertec, 2006 Exceptional Technical Achievement Award from CPMT, 2007 Distinguished Lecturer from CPMT, 2009 Distinguished Author from SMTA, and 2010 Electronics Manufacturing Technology Award from CPMT.

T2: Flexible Optical Media for High Data Rate Interconnections
PDC Instructor: Dr. How T. Lin, Endicott Interconnect Technologies, Inc

CANCELLED
Professional Development Courses (PDCs)...continued

T3: Understanding the Common Failure Modes from a Physics of Failure Perspective
PDC Instructor: Greg Caswell, DfR Solutions

Salon 4

Course Description: There are numerous failure modes and mechanisms that can impact a product. Understanding how they occur and how to obviate them during the design stage can vastly improve a product’s ability to withstand the rigors of its intended environment.

This course will address the common failure modes associated with printed circuit boards, passive components, Integrated Circuits, High Brightness LEDs, QFNs, CSPs, PoP, and MEMs along with the effects of long term storage of components.

Physics of Failure (PoF) is a proactive science based philosophy that addresses material science, physics and chemistry and provides the basis for the student to develop an up-front understanding of failure modes/mechanisms. Knowing how things fail is equally important to understanding how and why things work by enabling engineers and designers to be knowledgeable about root causes of failures so that they can be designed out in new products.

PoF provides a scientific basis for evaluating usage life and hazard risks for new materials, structures and technologies when exposed to their actual operating conditions.

Examples of each failure mode/mechanism will be illustrated along with insight into methods for obviating them.

Who Should Attend? Engineers or designers who are developing new products and want to understand how to enhance their designs by developing an in depth knowledge of the various issues that can impact a product design if the wrong materials, packaging technologies, stress loads, or manufacturing processes are implemented.

Greg Caswell is widely recognized as a pioneer in surface mount technology (SMT) and has 40 years of experience in the electronics industry. Currently he is a Sr. Member of the Technical Staff for DfR Solutions. Previously he was the VP-Engineering for Reactive NanoTechnologies and VP Business Development for Newport Enterprises. His experience encompasses all aspects of SMT manufacturing, circuit board fabrication and materials, advanced packaging (BGA, uBGA, CSP, Flip Chip, QFN), IC fabrication processes and materials, solder reflow, RoHS, and bonding utilizing specialized nanotechnology. Greg, a Past President of IMAPS NA, was the National Chairman for the IMAPS Advanced Technology Workshop program from 1989-2000 and was the Editor in Chief for Advancing Microelectronics magazine from 2009-2012. He received his Bachelor of Science in Electrical Engineering from Rutgers University and also has a Bachelors in Management from St. Edwards University in Austin.
Salon 5

Course Description: Semiconductor process and device advances have provided ever more functionality in a smaller chip footprint and have driven both the high-end computing market and the portable electronics market. Advances in microelectronics packaging have become just as critical to these markets. These device advances come with an increase in device power requirement, cooling needs, I/O counts and voltage delivery sensitivity. Embedded chip approaches have been developed to address these devices advancements and packaging needs. This course will give an in depth look into embedded chip technologies.

It will start with a background overview of semiconductor advances for the past 40 years and they are effecting device power dissipation, supply current, I/O count and clock rate. It will look at the evolving packaging approaches that have occurred over the past 20 years. It will go into the various approaches used in SoP SiP MCP and MCM multichip technologies; 3-D technologies; wafer level package. This course will focus on single chip and multichip embedded chip technologies.

It will look at the basic features of embedded chip approaches, their construction and the processes used to fabricate and assemble them. It will look at the leading approaches to these technologies and their inherent advantages and disadvantages. This course will cover issues including yield losses, component handling and availability. The course will look at the leading companies implementing various versions of these technologies and cover the key differentiators between them.

Who Should Attend? This course covers basic and advanced topics for product and design engineers, manufacturing process and assembly/packaging engineers, engineering managers, senior design technicians, consultants and academic specialists as well as marketing and sales personnel requiring an understanding of the capabilities, implications and options of advanced packaging and assembly technologies.

A BSEE graduate of University of Massachusetts, Ray Fillion focuses in the areas advanced packaging and interconnection for next generation microelectronics systems. Ray has more than 40 years experience at GE in Aerospace Electronics and Global Research in all aspects of microelectronics in technical, management, business development and IP licensing positions. Mr. Fillion also has served on Advisory Boards for a variety of technical societies, industry, academic institutions and governmental funded agencies. He has taught courses on advanced packaging for IMAPS, SMTA, GE and several universities. Ray is now heads a consulting firm, Fillion Consulting, specializing in technical assessment of microelectronic technologies and IP including multichip modules, chip scale, 2.5D/3D, embedded chip and power packaging. He was the lead inventor of the GE embedded chip technology with most of his 32 issued US patents in that area. He has been active in a number of technical societies including IMAPS: Executive Council Director, Technical Committee Member, Session Chair, Presenter; ECTC: Technical Committee Member, Session Chair, Presenter; and Symposium of Polymers in Microelectronics: Board Member, Session Chair, Presenter. He has authored more than 125 technical papers, journal papers, and technical articles with three Outstanding Paper awards from the IMAPS International Conference.
T5: Practical Aspects of MEMS and Microsystem Packaging
PDC Instructor: Chip Spangler, Aspen Microsystems

Salon 6

Course Description: MEMS and Microsystem devices have seen remarkable growth in both high-volume commercial applications as well as lower-volume specialty applications. One of the key reasons for this growth is the advances made in package technologies and the related reductions in cost and improvements in device function that they enable. This class will provide practical guidance for those looking to leverage these advanced packaging technologies to help bring their products to market. The first portion of the class will set the context for microsystem packaging by exploring a diverse range of real-life applications and the packaging challenges they present. Case studies will be used for this exploration into inertial sensors, micro-displays, RF switches and components, print heads and fuel cells as well as medical packages for neural stimulation and DNA analysis. These case studies will focus not only on package design and system interfaces, but also the material and assembly process challenges they create. The second portion of the class will review the fundamentals of microelectronic package design and assembly process as adapted for MEMS and microsystem applications. Topics will include wafer dicing, die attach, wirebond and flip chip technologies as well as hermetic sealing and non-hermetic encapsulation methods.

Who Should Attend? This course is intended for designers, engineers and technical managers who would like to learn about practical aspects of packaging MEMS and microsystem devices. Through real-life case studies attendees will be given the tools needed to analyze the technical tradeoffs so that the products they are responsible for will meet functional, cost, reliability, size and quality requirements. This course will also be suitable for those who are looking for a broad introduction into the challenges of MEMS packaging. Practical information regarding materials, equipment and processes will provide a solid foundation for attendees to address the packaging challenges in their organization.

Dr. Chip Spangler received his Ph.D. in electrical engineering from The University of Michigan in 1988. He is currently President of Advanced Microsystems providing engineering services for advanced microelectronic devices, with specialties in MEMS package and assembly technologies. Previously Chip was the President and CTO of Aspen Technologies, a microelectronic package and assembly service supplier. He was responsible for developing packaging solutions for high-pixel count displays, DNA analysis products and MEMS telecom switch arrays as well as a variety of other MEMS devices. Before this, Chip worked at Ford Microelectronics where he had responsibility for pressure sensors, and airbag and chassis accelerometers. His work lead directly to the production of the world’s first plastic surface mount airbag accelerometer. Dr. Spangler is the author of over 30 technical publications and has 9 patents. He is currently an editor for IEEE JMEMS and has helped organize a number of MEMS technical conferences.

T6: Signal/Power Integrity Design for Electronic Packaging and 3D System Integration
PDC Instructors: Dr. Ivan Ndip, Fraunhofer IZM; Professor Ege Engin, San Diego State University; Dr. Antonio Ciccomancini Scogna, CST of America

Salon 7

Course Description: Efficient and low-cost design of electronic packages, PCBs and 3D integration technologies requires a good understanding of the root causes of signal integrity (SI), power integrity (PI) and electromagnetic interference (EMI) problems at GHz frequencies, as well as methods to analyze, prevent or solve them. The objective of this course is to illustrate a wide range of methods for electrical modeling, measurement and optimization of electronic packages, PCBs and 3D integration technologies, under consideration of SI, PI and EMI/EMC effects. Measurement techniques for extracting the relative dielectric constant and loss tangent of electronic packaging materials will also be discussed. Finally, design guidelines for system optimization will be provided.

Course Outline:

- Introduction
 - Technologies for advanced packaging and 3D integration
 - High-speed design challenges
- Signal Integrity Design and Optimization
 - Lossy transmission lines considering surface roughness and glass weave effect
 - Signal vias in organic and glass interposers
 - Through silicon vias (TSVs) in active and passive silicon for 3D integration

Salon Rooms 1-10
- Efficient methods for performing signal integrity simulations, considering package/PCB co-simulation

- Power Integrity Design and Optimization
 - Power-ground plane pairs
 - Decoupling capacitors and simultaneous switching noise (SSN)
 - Electromagnetic band gap (EBG) structures and photonic crystal power/ground layers (PCPLs) for suppressing SSN coupling
 - Efficient methods for performing power integrity simulations

- Measurement and extraction of relative dielectric constant and loss tangent of packaging materials.

Who Should Attend? Engineers, scientists, researchers, designers, managers and technicians involved in the process of layouts, simulation, design, integration and optimization of electronic packages, PCBs and interconnections.

Dr. Ivan Ndip obtained his M.Sc., and Ph.D. with the highest distinction (Summa Cum Laude) in electrical engineering from the Technical University Berlin, Germany. In 2002, he joined the Fraunhofer-Institute for Reliability and Microintegration (IZM) Berlin as a Research Engineer and worked on signal integrity modeling and design as well as on antenna integration. Since 2006, he has been a Senior Research Engineer and Group Manager of RF & High-Speed System Design, where he's responsible for leading a team of Research Engineers and Graduate Students as well as for developing and leading research projects that focus on electromagnetic modeling, design and optimization of RF/high-speed packages/boards/modules, integrated antennas and passive RF front-end components.

Since 2008 Dr. Ndip has also been a Lecturer in the Department of High-Frequency and Semiconductor System Technologies, School of Electrical Engineering and Computer Sciences, Technical University Berlin. He is currently engaged in teaching courses on Numerical Techniques in Electromagnetics and on Electromagnetics for Design and Integration of Microsystems. He has more than 100 publications and has won 6 best paper awards at leading international conferences. Dr. Ndip is also a recipient of the Tiburtius-Prize, awarded yearly for outstanding Ph.D. dissertations in the state of Berlin, Germany.

Dr. Ege Engin received his B.S. and M.S. degrees in electrical engineering from Middle East Technical University, Ankara, Turkey, and from University of Paderborn, Germany in 1998 and 2001, respectively. He received his Ph.D degree with Summa Cum Laude from the University of Hannover, Germany in 2004. Dr. Engin has worked as a research engineer with the Fraunhofer-Institute for Reliability and Microintegration in Berlin, Germany and at Georgia Tech. He is currently an Assistant Professor in the Electrical and Computer Engineering Department of San Diego State University. He has more than 60 publications in the areas of signal and power integrity modeling and simulation and 4 patent applications. He has co-authored the book “Power Integrity Modeling and Design for Semiconductors and Systems,” published by Prentice Hall in 2007.

Dr. Antonio Ciccomancini Scogna received the Laura and Ph.D. degrees in electrical engineering from the University of L'Aquila, L'Aquila, Italy, in 2001 and 2005, respectively. He is currently a Principal Engineer at Computer Simulation Technology (CST) of America, Framingham, MA. His research interests include electromagnetic compatibility numerical modeling, printed and integrated circuits, electromagnetic packaging effects, signal integrity and power integrity analysis in high-speed digital systems. He has authored or coauthored more than 50 publications in IEEE journal transactions, IEEE conference proceedings, and Electronic Design Automation (EDA) magazines. Dr. Ciccomancini is a member of Applied Computational Electromagnetic Society (ACES), Institution of Engineering and Technology (IET), EMC TC-9 and TC-10 Committees. In 2004, he received the CST University Publication Award for the use of the finite-integration technique in signal integrity applications. He is the recipient of DesignCon Finalist Best Paper Award in 2007 and DesignCon Best Paper Award in 2008.

Salon Rooms 1-10

IMAPS2013.org • Orlando, Florida
Salon 1

Course Description: The proposed course is intended to focus on the potential issues caused by mechanical stress in modern ICs, and specifically on the potential effects of stress on device parametric characteristics. With the current technology trends towards softer insulators and harder conductors, on and off the chip, and with the continued trend towards sub-mm overall component thicknesses, the distribution of strain precipitated by the CPI-driven stress, is expected to be significantly different than in the past. In addition, new features, such as TSVs, and new integration schemes, such as SiP solutions, introduce new sources of stress. This stress results in shifts of device performance and parametric characteristics - phenomena that are harder to detect and hence harder to fix than the traditional CPI issues, such as cracks and delamination. Consequently, this new class of CPI must be addressed proactively during product design. This course will describe the major components of an ecosystem developed to address this problem. The course is broken into three phases:

1. Product Challenges - a discussion of the various sources of CPI stress and the trends in the technology that make the modern SoC devices susceptible to strain. This portion will also address the challenges of including stress awareness in product design.

2. Modeling Challenges - a discussion of the various modeling methodologies, and a description of techniques used in the simulation tool. This portion will also define the material parameters required.

3. Material Characterization Challenges - discussion of the various characterization techniques for multi-scale materials data, particularly stress, and the selection of the specific solutions used. This portion of the course also describes a specific study conducted to validate the entire methodology.

Who Should Attend? - Chip and Package Design Engineers - Product Managers - Technology Integration Engineers - Failure Analysis Engineers - Reliability Engineers

Riko Radojcic is a Senior Director of Engineering at Qualcomm QTI, and a leader of 3D Technology team. Radojcic has more than thirty year’s experience in the semiconductor industry; and held various positions as an independent consultant, and at PDF Solutions, Tality, Cadence, Unisys and Burroughs. Radojcic received his BSc and PhD from University of Salford, UK.

Valeriy Sukharev is a Technical Lead at the Design to Silicon Division of Mentor Graphics Corporation, Fremont, CA. Sukharev leads research and development of new full-chip modeling and simulation capabilities for the semiconductor processing and DFM/DFR applications. Prior to Mentor Graphics, Dr. Sukharev was a Visiting Professor with Brown University, Providence, RI, and a Guest Researcher with NIST, Gaithersburg, MD. He held senior technical positions at LSI Logic Advanced Development Lab, Milpitas, CA. He holds Ph.D. in physical chemistry from the Russian Academy of Sciences.

Ehrenfried Zschech is Division Director at Fraunhofer Institute for Nondestructive Testing in Dresden. His responsibilities include micro- and nanoanalysis as well as R&D in the field of test systems. He received his diploma degree in solid-state physics and his Dr. rer. nat. degree from Dresden University of Technology. Zschech gathered experience in industry, during 17 years in several technical and management positions at Airbus and AMD. He holds honorary professorships for nanomaterials at the Brandenburg University of Technology in Cottbus and for nanoanalysis at the Dresden University of Technology. Zschech is acting as President of the Federation of European Materials Societies (FEMS).
T8: Introduction to the Design and Fabrication of RF, High Speed and Microwave Hybrids, MCM’s and Modules
PDC Instructor: Tom Terlizzi, GM Systems LLC

Salon 9

Course Description: The course presents electrical and physical design, manufacturing, materials, quality and reliability information in terms understandable to engineering and non-engineering personnel. RF Packaging history, characteristics and drivers will be outlined. Types of packages (IC, chip scale, MEMS, Hybrid, MCM, Flip Chip, BGA, Aluminum and Kovar housings) and substrates (Thick and thin film, HTCC, LTCC ceramic, organic) and critical differences among them and their High Frequency applications (Microstrip, Stripline, Coplanar) will be discussed. RF and Microwave layout and the commonly used design tools and software will be outlined. The course will look at the design selection to meet use and application environments. Step-by-step manufacturing flow for different packages and products will be presented as an example to understand the complexity of processes, materials and equipment involved in their manufacture. RF & Microwave packaging concepts will be introduced and the tradeoffs of different interconnect methodology (connectors, wire bonds, ribbon bonds, AuSi & AuSn eutectic, soft solder and epoxy. Materials selection with respect to thermal resistance will be discussed. Finite Element and reliability software will be discussed to insure the design will perform to specification. Quality and reliability issues related to RF packaging and their present and future solutions will be outlined.

Who Should Attend? It will help the attendees to understand the application and assembly of RF and Microwave microelectronic package technology on the next level interconnect and the service environment that microelectronic packages must protect its components. Personnel (Design engineers and process engineers) entering the RF microelectronic packaging field will have a critical look at the electrical design, physical design, layout quality, reliability and material issues related to the development and manufacture of microwave modules. Non-packaging personnel will learn the ins and outs of RF packaging. Non-technical personnel will learn the material and manufacturing intricacies of RF and Microwave microelectronic packages and the associated buzzwords used to describe them.

Tom Terlizzi is VP at GM Systems, a Management and Technology consulting firm, providing Microelectronic Business & Technology plans, , Marketing & Sales strategy, Product development for microelectronic projects and business proposal support. He has designed and developed Power management systems, Single board computers, microelectronic circuits, hybrids, COB modules, ICs, RF modules, for over 30 years for military, aerospace, telecom and consumer markets as a VP/GM, Director of marketing, Chief Engineer, Operations/Engineering manager at Aeroflex, Norden/UTC, G.I. Microelectronics and Grumman. He spearheaded acquisitions of several high tech companies,ISO9000/Mil-PRF-38534 quality certifications. He received a BEE from CCNY, a MSEE from NYU-Poly & has published several articles, papers and tutorials at international conferences, edited books on electronic packaging, consulted for the DoD on advanced RF electronic packaging. Tom was the Metro ISHM Chapter President in 1983 and in his free time also writes a Blog for EDN Magazine Online - Looking @ electronics.
Win Some $$ - Take Home One of our Great Auction Items....

Support the Microelectronics Foundation and the young engineers/students who benefit from this charity by participating in this year’s 50/50 raffle or the silent auction.

The 50/50 raffle will take place during Monday’s Welcome Reception in Junior Ballroom F. Tickets will be sold throughout the Reception and one winner will be drawn near the conclusion of the Reception. The winner takes home 50% of the total cash collected while the other 50% is donated to the Foundation.

Also be sure to take a look at the many great Silent Auction items this week, also benefiting the Foundation. We’ll have fine bottles of wine, Dom Perignon Champagne, hotel vouchers, golf items, and much more. The auction will be open during the Welcome Reception, and then on display outside the exhibit hall Tuesday and Wednesday. The auction will close at 7pm on Wednesday as the Exhibit Hall Reception winds down. 100% of the money raised during the auction goes directly to the Foundation.

Contact Brian Schieman or Dave Virissimo at registration if you have questions or wish to donate.
You Cannot Miss What’s Happening in the Hall!

Exhibition in the GRAND BALLROOM

The IMAPS 2013 exhibition is new and improved this year, with more companies on display, and more reasons than ever before to spend all your available time in the GRAND BALLROOM. This year, the exhibition is open two days: Tuesday, October 1 (11am-5pm) and Wednesday, October 2 (9am-7:30pm). These Conference days go quickly so take a look at the Floorplan (page 22), the Exhibit Directory (pages 24-36), the Products & Services Directory (pages 37-39) and maximize your time in the hall visiting the companies you need to speak to about new products, services, and the solutions you need. Here’s a reminder about the many great reasons to spend lots of time in the GRAND BALLROOM this year…

• **126 Exhibit Booths on Display**

• The latest and greatest products and services for the microelectronics/packaging supply chain on display, including new product launches from many organizations.

• Have a packaging challenge (materials, process, or others)? The solution is likely in the hall!

• The all NEW “Research Lab Corridor” featuring: Alabama Microelectronics Science & Technology Center; Center for Nanoscale Science & Eng., North Dakota State University; Desich SMART Center; Fraunhofer IKTS; Fraunhofer IZM; and Georgia Tech 3D Systems Packaging Research Center (PRC).

• Need a jolt of caffeine?! Take your refreshment breaks at **IMAPS Cafés** in the hall:

 IMAPS Cafés Sponsored by:

 [LORD AskUsHow®](#)

• Grab a delicious treat during the all new **Dessert “Happy Hour”** Tuesday from 3:15-4:30pm:

 Dessert “Happy Hour” Sponsored in Part by:

 [PALOMAR TECHNOLOGIES](#)

• **Wednesday’s Lunch is on us!** Bring your lunch ticket and grab a sandwich from 12:15-1:30pm:

 Wednesday’s Exhibit Hall Lunch Sponsored In Part by:

 [APPLIED MATERIALS®](#)

• The exhibit closes with some fun! Join the **Exhibit Hall Reception** Wednesday, 5:30-7:30pm:

 Exhibit Hall Reception sponsored by:

 [micross components](#)

• Need to e-mail or to get on-line? Visit the **Internet Café** or access the **wireless internet** ONLY in the hall:

 Internet Café and Wireless Internet Sponsored by:

 [NATEL](#)

• The **Student Poster Session**

• Exhibitor give-aways and exciting **Raffles!**
3D Plus USA • Booth # 201
6633 Eldorado Pkwy., # 420, McKinney, TX 75070 USA
(P) 214-733-8505
(E) memond@3d-plususa.com
(W) www.3d-plususa.com

3D Plus is a worldwide supplier of advanced high density 3D microelectronic products and Die Stacking technologies meeting the demand for high reliability, high performance and very small size of today’s and tomorrow’s electronics.

We focus on the demand for high-reliability and high-performance for space-saving technology-driven applications in industrial, computing/telecommunications, security and defense, avionics, medical and space markets.

ACM Research, Inc. • Booth # 421
42307 Osgood Rd., Fremont, CA 94539 USA
(P) 510-445-3700
(E) michael.lee@acmrcsh.com
(W) www.acmrcsh.com

ACM Research, Inc. was founded in 1998 in Silicon Valley. In September 2006, ACM shifted its focus to Asia, forming ACM Shanghai subsidiary. The company is now located in Shanghai’s Zhangjiang High-Tech Park. In where, it conducts research, development, engineering, manufacturing, marketing, sales and service activities. ACM specializes in wet process equipment including single-wafer megasonic cleaning tools (Ultra C), copper stress free polishing (Ultra SFP) and copper plating (Ultra ECP).

ACM has a strong IP portfolio with over 100 patents filed internationally. ACM is committed to providing customers with advanced technology solutions, low cost of owner –ship, world-class products, service and engineering.

AdTech Ceramics • Booth # 800
511 Manufacturers Road, Chattanooga, TN 37405 USA
(P) 423-488-1184
(E) brian.bukovitz@adtechceramics.com
(W) www.adtechceramics.com

AdTech Ceramics produces custom co-fire ceramic and metal packages utilizing HTCC and AlN. HD alumina is also available with 0.12um surfaces for thin film applications. Applications include Medical, Military, Aerospace, Optoelectronics and High Frequency performance to 30 GHz. Microwave Modeling and Design Assistance is also available. Additional capabilities include ceramic injection molded and etched medal products.

AI Technology, Inc. • Booth # 400
70 Washington Road, Princeton Jct, NJ 08550 USA
(P) 609-799-9388
(E) cboersig@aitechnology.com
(W) www.aitechnology.com

AI Technology has been one of the leading forces in the development of advanced material and adhesive solutions including: Gap-Filling Compressible Phase-Change Pads, Thermal Gels, Thermal Grease, Stress-free Adhesive Films, Adhesive Pastes, RF/EMI shielding solutions. We also offer Conductive and Dielectric materials, high temperature solutions and room temperature cure materials.
The Alabama Microelectronics Science and Technology Center (AMSTC) is a cross-disciplinary research center investigating new concepts in microelectronics. AMSTC’s research laboratories include: the Compound Semiconductor Laboratory in the Department of Physics; the Stress and Thermal Characterization Laboratories in the Departments of Electrical and Computer, and Mechanical Engineering; and the Advanced Packaging, Low-temperature, Electronics Materials, and Microelectronics Laboratories in the Department of Electrical and Computer Engineering.

ancosys Inc. • Booth # 805
100 Cooperative Way, Kalispell, MT 59901 USA
(P) 406-890-6100
(E) usa@ancosys.com
(W) www.ancosys.com

ancosys provides the most advanced automated precision monitoring and replenishment of both Electroless and Electrolytic chemical plating baths.

ATV Technologie GmbH
(Con-Exhibitor: BSET EQ) • Booth # 322
Johann-Sebastian-Bach-Str. 38, Vaterstetten 85591 Germany
(P) 49810630500
(E) sales@atv-tech.de
(W) www.atv-tech.de

ATV manufactures:
IR VACUUM REFLOW/BRAZING/RTA/Lid Sealing/Getter Activation System: -1 100°C
QUARTZ TUBE Furnaces: up to 300 mm, multipurpose, fast ramping
LTCC SINTERING Furnace/PRESS
HOT PLATES: < 450°C
DIAMOND SCRIBERS: up to 200 mm wafer
Manual Hybrid assembly/test and repair station
BSET EQ manufactures Plasma etchers/cleaners/stripper/RIE/Laser assisted de-capsulation

BESI North America, Inc. • Booth # 704
33 East Comstock Drive, Suite 7, Chandler, AZ 85225 USA
(P) 480-497-6420
(E) alice.kok@besi.com
(W) www.besi.com

Besi is a leading supplier of semiconductor assembly equipment for the global semiconductor and electronics industries. Through its product groups Datacon (Die Attach), Esec (Die Bonding), Fico (Packaging) and Meco (Plating), Besi develops and markets leading edge assembly processes and equipment for leadframe, array connect and wafer level packaging applications.

BSET EQ, (Co-Exhibitor: ATV Technologie GmbH) • Booth # 322
2545 West 10th Street, Suite L, Antioch, CA 94509 USA
(P) 925-755-2300
(E) sales@bsetplasmas.com
(W) www.bsetplasmas.com

BSET EQ Manufactures gas plasma systems and is a developer of key process technologies used throughout the industries. We have a worldwide install base backed by outstanding service and support for our customers. Back end semiconductor related applications include plasma cleaning applications for improvement of packaging yields, package decapsulation or delaying for failure analysis. Front end applications include wafer level etching, ashing or descum processes in single wafer or batch processes. We have also manufactured tools noted for high volume reclaim of 300 mm wafers having thick buildups of diamond like films. BSET EQ is the world leader in Package opening for failure analysis and counterfeit prevention using gas plasma technologies. Solar applications include advanced texturing and edge etch isolation of cells. This year we add thermal processing equipment and expertise to our product line through our North American representation of ATV Technologie GmbH.

Beijing Tian-Long Tungsten & Molybdenum Co., Ltd. • Booth # 213
Tongzhou District, Beijing, China
(P) 630-361-5124
(E) liqunyudr@gmail.com
(W) www.tlwm.cn

Featured Product: Tungsten Copper heat sinks, Molybdenum Copper heat sinks, Cu/Mo/Cu(CMC), Cu/Mo/Cu/Cu(CPC), Tungsten, Molybdenum and alloys.

Beijing Tian-Long Tungsten & Molybdenum Co., Ltd. (TLWM) has been manufacturing tungsten copper, molybdenum copper, CMC, CPC which are widely used as heat sinks in electronic packaging. With a personnel of more than 560 people and over 56,000 square meters of manufacturing space, TLWM is a recognized leader in the tungsten and molybdenum deep processing industry in China. Proud to be an ISO 9001:2008 and ISO 14001:2004 certified company, TLWM is your wise choice.
Ceradyne VIOX, Inc., a 3M Company • Booth # 717
6701 6th Ave. South, Seattle, WA 98108 USA
(P) 206-763-2170
(E) glass@viox.com
(W) www.viox.com

Ceradyne VIOX, Inc., a 3M company ("VIOX") is a leader in the development and production of specialty and electronic-grade glass materials, suitable for capacitor, thick film, solar cell, bioceramic, hybrid, LTCC and other applications. Glasses are batch-melted in platinum crucibles to prevent contamination. Lead and cadmium free glasses are also designed and produced. Glass powders are produced by wet or dry milling. VIOX offers glass design services including laboratory test melting and in-house analytical capabilities. VIOX also produces press-ready (spray dried) granulation. Come visit Booth # 717 at IMAPS 2013 for more details.

CeramTec GmbH • Booth # 307
CeramTec-Weg 1, Marktredwitz, Germany 95615
(P) 5134597378
(E) rchristensen@ceramtec.com
(W) www.ceramtec.com

CeramTec is one of the world’s leading manufacturers of technical ceramics and is specialized in the development, manufacturing and sales of parts, components and products made from ceramic materials. Products are used in the Electronics, Automotive, Lighting, Medical, Energy and Environmental Industries.

Coining, Inc., an Ametek Company • Booth # 614
15 Mercedes Dr, Montvale, NJ 07645 USA
(P) 619-464-5430
(E) david.virissimo@ametek.com
(W) www.coininginc.com

Colorado Microcircuits Inc. • Booth # 315
6650 Harrison Ave, Loveland, CO 80538 USA
(P) 970-663-4145
(E) gthalman@coloradomicrocircuits.com
(W) coloradomicrocircuits.com

Conductive Containers Inc. • Booth # 313
4500 Quebec Avenue North, New Hope, MN 55428 USA
(P) 763-537-2090
(E) zachb@corstat.com
(W) www.corstat.com

CCI is you one stop source for eliminating ESD in your manufacturing, shipping, and handling processes. We engineer stock and custom solutions utilizing ESD Safe Plastics, Corstat, and ESD Safe Foams.

CVInc • Booth # 317
850 S. Greenville, Suite 108, Richardson, TX 75081 USA
(P) 972-664-1568
(E) tqcollier@covinc.com
(W) www.covinc.com

CVI specializes in a number of quick turn processing for die bumping (single die, partial wafers and complete wafers), failure analysis and assembly. Our ability for in-house plating of both electrolytic and electroless (Cu, Sn, Ni, Au and Pd) helps provide same day or next day processing of bumping materials.

DeWeyl TOOL COMPANY • Booth # 316
999 Transport Way, Petaluma, CA 94954 USA
(P) 707-765-5779
(E) jpalmer@deweyl.com
(W) www.deweyl.com

DeWeyl provides the finest quality bonding wedges in the world. Located in the Petaluma, CA, DeWeyl’s primary business is manufacturing wire bond wedges and custom high precision tooling for the semiconductor, aerospace and medical industry. DeWeyl produces wedges made from ceramic, titanium and tungsten carbide for small and large round wire and ribbon applications.

DuPont Microcircuit Materials • Booth # 520
14 TW Alexander Drive, Research Triangle Park, NC 27709 USA
(P) 800-284-3382
(E) mcmcustomerservice@usa.dupont.com
(W) www.mcm.dupont.com

DuPont Microcircuit Materials has over 40 years of experience in the development, manufacture, sale, and support of specialized thick film and GreenTape™ low temperature co-fired ceramic (LTCC) compositions for a wide variety of printed electronic applications in the photovoltaic, display, automotive, biomedical, industrial, military, and telecommunications markets. We deliver solutions that lower the cost of ownership and improve performance, reliability and functionality. For more information on DuPont Microcircuit Materials and Solamet® metallization pastes, please visit http://mcm.dupont.com.

East China Research Institute of Microelectronics (ECRIM) • Booth # 311
1011 River Mist Dr., Rochester, MI 48307 USA
(P) 248-462-2712
(E) jwang@blueoceansllc.com
(W) www.blueoceansllc.com

ECRIM engages in developing, manufacturing and sales of variety of Microelectronic and Package products. ECRIM is known for its technical strength, proven product reliability, innovative solutions, quick response, competitive pricing and overall value. We have seven product lines including LTCC, AIN/HTCC, Thick Film, Thin Film, Metal Hermetic Package and Furnace.
Element Six Technologies US Corp. • Booth # 308
3901 Burton Drive, Santa Clara, CA 95054 USA
(P) 408-986-2410
(E) Thomas.obeoler@e6.com
(W) www.e6.com

E6 fabricates and sells engineered synthetic poly- and single crystal diamond products and diamond composites. Technologies using diamond include thermal management, high power laser optics, beam splitters, IR spectroscopy, high energy particle detectors as well as electrochemistry and scientific applications. Custom engineered configurations are available to meet your requirements.

Endicott Interconnect Technologies • Booth # 200
1093 Clark Street, Endicott, NY 13760 USA
(P) 866-820-4820
(W) www.endicottinterconnect.com

Endicott Interconnect Technologies, Inc., (EI) with headquarters in Endicott, NY, is a vertically integrated provider of high performance electronic packaging solutions consisting of design and fabrication of printed circuit boards and advanced semiconductor packaging, full turnkey services for printed circuit board and integrated circuits assembly and test, as well as systems integration. EI product lines meet the needs of markets including defense and aerospace, communications and computing, automated test equipment, and medical, where highly reliable products built in robust manufacturing operations are critical for success. With more than 45 years experience in providing microelectronics solutions, the company brings to market a unique mix of leading edge technology and technical know-how that provide customers with a time-to-market advantage and competitive differentiation.

ENrG Incorporated • Booth # 215
155 Rano Street, Suite 300, Buffalo, NY 14207 USA
(P) 716-390-6740
(E) jolenick@enrg-inc.com
(W) www.enrg-inc.com

Established in 2003 and based in Buffalo, NY, ENrG Inc. specializes in fabricating flexible ceramic membranes (≤40µm thick) for harsh environments. ENrG manufactures and markets Thin E-Strate®, an inert, ultra-thin, dense, customizable and coatable 3 mol% yttria-stabilized zirconia (3YSZ) substrate. When coated with other materials Thin E-Strate® can be used as a membrane in barrier, transmission, or permeability applications.

Epoxy Technology, Inc. • Booth # 622
14 Fortune Drive, Billerica, MA 01821-3972 USA
(P) 978-667-3805 Ext. 213
(E) jmccaber@epotek.com
(W) www.epotek.com

Epoxy Technology is a Global Manufacturer and Custom Formulator of Epoxy Adhesives for more than 45 years. EPO-TEK Specializes in Adhesives for Circuit Assembly (PCB), Die Attach, LED, Solar, Optoelectronic, Hard Drive, Display, Automotive Electronics, Medical Electronics, and Military/Aerospace Applications. ISO 9001 Certified. RoHS and REACH Compliant. www.EPOTEK.com

ESL ElectroScience • Booth # 808
416 East Church Road, King of Prussia, PA 19406-2625 USA
(P) 610-755-9111
(E) dchambers@electroscience.com
(W) www.electroscience.com

ESL ElectroScience specializes in providing solutions to enable customers to take technologies from concept through high volume production using thick film pastes and ceramic tapes. ESL products can be found in hybrid microcircuits, multilayer microelectronics, transformers, thick film heaters, sensors, and fuel cells. For more information visit us at www.electroscience.com

F&K Delvotec • Booth # 405
27182 Burbank, Foothill Ranch, CA 92610 USA
(P) 916-812-9071
(E) farnaz.mehran@fkdelvotecusa.com
(W) www.fkdelvotec.com

Awarded “The #1 Wire Bonder Supplier” VLSI Research’s Customer Satisfaction Survey. For the 5th year in a row F&K Delvotec has won this prestigious award by offering the best technology, selection and service. Heavy Wire & Ribbon - Fine Wire & Ribbon - Ball Bonding – Wire Pull & Shear Testing

Ferro Corporation • Booth # 615
6060 Parkland Boulevard, Mayfield Heights, OH 44124 USA
(P) 216-875-5600
(E) ed.stadnicar@ferro.com
(W) www.Ferro.com

Ferro Electronic Materials develops, manufactures and markets high-purity powders, pastes, and tapes for many electronic applications, including: Hybrid microelectronics Multilayer ceramic capacitors Specialty glasses Electronic packaging Component terminations Display materials Semiconductor Passivation Sealing Glasses Surge Protection

Finetech • Booth # 508
560 E Germann Rd #103, Gilbert, AZ 85297 USA
(P) 480-893-1630
(E) sales@finetechusa.com
(W) www.finetechusa.com

Finetech’s precision die bonders provide sub-micron placement accuracy and process modularity: thermo-compression/sonic, eutectic, epoxy, ACF & Indium bonding, sensitive materials (GaAs/ GaP), UV curing. Manual and automated models: flip chip, opto / photonics packaging, RFID, MEMs, sensors, CoG. Advanced rework systems integrate the complete rework cycle into one efficient design, capable of reworking 01005s, BGAs, shields, flip chip, POP, CoF.
Fraunhofer Institute for Ceramic Technologies and Systems IKTS RESEARCH LAB CORRIDOR • Booth # 526
Winterbergstrasse 28, 01277 Dresden, GERMANY
(P) 49 30 46403-100
(E) info@izm.fraunhofer.de
(W) www.izm.fraunhofer.de

Fraunhofer Institute for Reliability and Microintegration IZM RESEARCH LAB CORRIDOR • Booth # 426
Gustav-Meyer-Allee 25, 13355 Berlin, Germany
(P) 49 30 46403-100
(E) info@izm.fraunhofer.de
(W) www.izm.fraunhofer.de

Life without electronics is unimaginable these days. More and more products not only include electronics, but also sensors that record signals from the environment just like human senses. Basis for the integration of electronics is the availability of robust and cost-effective packaging technologies. Fraunhofer IZM — world-wide leading in electronic packaging technologies — make these advanced system integration technologies available to its international customers. The more a product’s electronics become indistinguishable from the product itself, the more important scaling and durability become. As reflected by its name, the second focus of Fraunhofer Institute for Reliability and Microintegration IZM is on these properties. Fraunhofer IZM’s technologies close the gap between microelectronics/microsystem technology and their application. Our research and development begins with the wafer and ends with ensuring that the technology functions reliably in any given environment.

Gannon & Scott • Booth # 207
33 Kenney Drive, Cranston, RI 02920 USA
(P) 400-228-4653
(E) mike@geibrefining.com
(W) www.geibrefining.com

Excellent precious metal recoveries are the results of our well-run Company.

Geib Refining Corporation • Booth # 609
399 Kilvert St., Warwick, RI 02886 USA
(P) 800-228-4653
(E) mdeymoya@haikutech.com
(W) www.pepgenmetal.com

Our precious metal refining and assaying processes provide timely, transparent returns and value for our electronics and industrial customers. Dedication to our customers, our industry and the world we live in has guided everything we’ve done for over 94 years. With leading edge refining technologies, stringent environmental standards and superior service we are advancing our industry’s standards by: Doing it right.

Haiku Tech, Inc. • Booth # 417
1669 NW 79 Ave., Miami, FL 33126 USA
(P) 305-463-9304
(E) mdeymoya@haikutech.com
(W) www.pepgenmetal.com

Technical and equipment solutions for the manufacture of electronic passive components, e.g. LTCC, HTCC, MLCC, etc. Products’ portfolio includes: dielectric powders, binders, tape casters, sheet blankers, mechanical punches, screen printers, stackers, isostatic laminators, green chip dicers, termination equipment, tape and reel, optical dilatometers and visual inspection equipment. Ceramic tape development and consulting services.

2013 Exhibitor Directory
IMAPS 2013 • 46th Annual Symposium on Microelectronics

Georgia Tech 3D Systems Packaging Research Center (PRC) RESEARCH LAB CORRIDOR • Booth # 726
813 Ferst Drive, NW, Atlanta, GA 30332-9560 USA
(P) 404-894-9097
(E) patricia.allen@ece.gatech.edu
(W) www.ece.gatech.edu

The Georgia Tech 3D Systems Packaging Research Center is unique in three ways. It goes beyond the traditional exploratory research by faculty and graduate students to an integrated and system level approach with particular focus on: 1) leading-edge electronic and bio-electronic systems research, 2) cross-discipline education of students, and 3) industry collaborations with more than 70 companies from the U.S., Europe and Asia all in one transformative systems technology called System-On-Package, pioneered by the Center.
Harrop Industries, Inc. • Booth # 714
3470 East Fifth Avenue, Columbus, Ohio 43219 USA
(P) 614-564-9949
(E) pjtimmel@harropusa.com
(W) www.harropusa.com
Harrop designs and manufactures a complete line of continuous and periodic tape casters, dryers, burn-off ovens, and kilns to produce ceramic products for laboratory, pilot plant, and industrial applications. Heat sources can be electric or gas-fired. Microwave assisted heating is available. Provide thermal analysis lab services and toll firing.

Hary Manufacturing Inc. (HMI) • Booth # 500
24 Cokesbury Road, Lebanon, NJ 08833 USA
(P) 908-722-7100
(E) sales@hmiprinters.com
(W) www.hmiprinters.com
HMI manufactures precision screen printers, integrated, automated screen printing systems, infrared conveyor/dryers, and manual and automatic vision alignment systems. HMI also distributes accessories such as squeegees, flood blades and “Shami” lint-free cleaning cloths. The company’s equipment is used for production of thick film hybrid circuits, solar cells, fuel cells, and many other screen printing applications requiring precision deposition.

Heraeus Thick Film Division • Booth # 504
24 Union Hill Road, West Conshohocken, PA 19428 USA
(P) 610-825-6050
(E) yin.yin@heraeus.com
(W) www.thickfilm.net
Heraeus is a worldwide supplier of thick film pastes, LTCC materials and precious metal powders to the hybrid microelectronics industry. Featured this year are new products to showcase our commitment to push new technologies. Some of the products we will be highlighting are our new materials sets for heater circuit construction for both low and high temperature heaters, a variety of conductors for use with AlN substrates and also a line of copper pastes for constructing circuits where high thermal and electrical conductivity are required. The Cu based pastes are designed to use simple thick film processing of high conductivity Cu for high power electronics.

Hesse Mechatronics, Inc. • Booth # 605
225 Hammond Avenue, Fremont, CA 94539 USA
(P) 408-436-9300
(E) info@hesse-mechatronics.us
(W) www.hesse-mechatronics.com
Designs and manufactures thin wire bonders for aluminum and gold, and heavy wire bonders for aluminum, gold and copper, round wire and ribbon, including HCR™ (High Current Ribbon). Services include wire bonding equipment training, applications support, development and production of prototypes and pre-production manufacturing at four applications and demonstration labs.

Hi-Rel Laboratories • Booth # 612
6116 N Freya, Spokane, WA 99217 USA
(P) 509-325-5800
(E) roger@hrlabs.com
(W) www.hrlabs.com
Hi-Rel Laboratories is an independently owned and operated corporation whose main concentration of activity is in the materials evaluation of the micro-electronic oriented phases of commercial, aerospace and defense industries. We specialize in the solution of process, production and application problems requiring knowledge and experience in microelectronics and materials technology.

IBM • Booth # 418
2070 Route 52, Hopewell Jct., NY 12533 USA
(P) 845-892-0660
(E) hochlb@us.ibm.com
(W) www-03.ibm.com/technology/
IBM is a global technology and innovation company. It is the largest technology and consulting employer in the world, with more than 400,000 employees serving clients in 170 countries. IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world’s most advanced servers.

Indium Corporation • Booth # 409
34 Robinson Road, Clinton, NY 13323 USA
(P) 315-853-4900
(E) askus@indium.com
(W) www.indium.com
Indium Corporation is a premier materials manufacturer and supplier to the global electronics, semiconductor, solar, thin-film and thermal management markets. Products include solders, performs, and fluxes; brazes; sputtering targets; indium, gallium, and germanium metals and inorganic compounds; and NanoFoil®. Founded in 1934, Indium has global technical support and factories located in China, Singapore, South Korea, the United Kingdom, and the USA.

Infinite Graphics • Booth # 206
4611 East Lake St., Minneapolis, MN 55406 USA
(P) 860-459-5085
(E) pmaitland@igi.com
(W) www.igi.com
Infinite Graphics provides precision imaging and software solutions. We offer high quality quick turn photomask services including non-stick mask coating. IGI’s Phototooling Toolbox software is a hierarchical editor / translator supporting many format. Ask about our new solderpaste stencil software.
Interconnect Systems, Inc. • Booth # 406
759 Flynn Road, Camarillo, CA 93012
(P) 805-482-2870
(E) info@isipkg.com
(W) www.isipkg.com

Interconnect Systems, Inc. (ISI) is a leading provider of advanced packaging and interconnect solutions, with in-house design, process development, and extensive manufacturing capabilities. ISI’s breadth of products includes miniaturized FPGA systems, high density modules, IC obsolescence adapters, and standard/custom interconnect solutions.

Kulicke & Soffa Industries Inc. • Booth # 705
1005 Virginia Drive, Fort Washington, PA 19034 USA
(P) 215-784-6000
(E) pkeehn@kns.com
(W) www.kns.com

Kulicke & Soffa (NASDAQ: KLIC) is a global leader in the design and manufacture of semiconductor assembly. Combined with its extensive expertise in process technology, K&S is well positioned to help customers meet the challenges of assembling the next-generation semiconductor devices.

Kyocera America, Inc. • Booth # 616
8611 Balboa Avenue, San Diego, CA 92123 USA
(P) 858-614-2592
(E) iris.labadie@kyocera.com
(W) www.kyocera.com/ki/semiparts

Kyocera is North America’s largest producer of ceramic semiconductor packages. These packages house microprocessors in the world’s leading brand-name personal computers and workstations. They enclose microwave and radio-frequency devices in digital PCS, cellular base stations and handsets around the world. They’re hurled into space in satellites orbiting Earth or in probes heading for Saturn where reliability is critical. They are also being implanted in the human body in sophisticated new biotech applications. Today, Kyocera’s San Diego Plant is one of the world’s largest manufacturers of metallized ceramic packages for the wireless industry.

LINTEC OF AMERICA, Inc. • Booth # 521
4629 E. Chandler Blvd. Suite 110, Phoenix, AZ 85048 USA
(P) 972-687-9097
(E) stuart-campbell@lintec-usa.com
(W) www.lintec-usa.com

LINTEC’s semiconductor manufacturing related products Adwill include a wide array of lines consisting of high-function adhesive tapes such as Non UV and UV dicing tape, BG surface protective tape, and die attach specialty films. Additionally, LINTEC is the industry leader in providing Wafer Mounting Systems and UV Irradiation Systems.

LORD Corporation • Booth # 600
111 LORD Drive, Cary, NC 27511 USA
(P) 877-275-5673
(E) customer.support@lord.com
(W) www.lord.com

Founded in 1924, LORD Corporation is a privately-held company that designs, manufactures and markets mechanical devices and electromechanical systems to control vibration, motion and noise; formulates, produces and sells general purpose and specialty adhesives, coatings and electronic materials; and develops products and systems utilizing magnetically responsive technologies.

Metalix Refining, Inc. • Booth # 618
59 Avenue at the Commons, # 201, Shrewsbury, NJ 07702 USA
(P) 732-942-4132 Ext. 4152
(E) mickiw@metallixrefining.com
(W) www.metallixrefining.com

Metalix purchases and recycles gold, silver, platinum, palladium and rhodium-bearing scrap materials. Our state-of-the-art recycling facility is located in Greenville, NC. With precious metals recovery processes designed to produce maximum value from your scrap materials and strict adherence to Environmental, Health, & Safety issues, Metalix is the only choice for recycling your precious metals. View our corporate video at www.metallixrefining.com.

Metalor Technologies USA • Booth # 807
255 John L. Dietsch Blvd., North Attleboro, MA 02763 USA
(P) 508-699-8800
(E) howard.imhof@metalor.com
(W) www.metalor.com

Metalor Technologies USA Advanced Coatings Division is a leading participant in the field of Precious Metals and advanced materials. POWDER AND FLAKES We produce a comprehensive range of precious metal powders and flakes for the automotive, electrical, renewable energy (Photovoltaic) and electronic industries. PLATING We are also a leading supplier of electrolytic and electroless Precious Metal plating products and processes, designed for high speed, reel-to-reel, barrel, rack, vibratory and semiconductor metallization equipment.

Micro Hybrid Dimensions, Inc. • Booth # 414
2161 E. 5th Street, Tempe, AZ 85281-3035 USA
(P) 480-202-7695
(E) Greg@Micro-Hybrid.com
(W) www.Micro-Hybrid.com

Micro Hybrid Dimensions, Inc. is a premier manufacturer of metalized ceramic substrates. Multilayer, resistor networks, standoff, edge wraps, and much more.

MicroScreen, LLC • Booth # 523
1106 South High Street, South Bend, IN 46601 USA
(P) 574-232-4358
(E) ggomez@microscreen.org
(W) www.microscreen.org

Screens for thick film, solar, and large format (up to 70” x 102”). We offer photoplottign services, barcoding of frames, high-tension mesh, with a variety of stainless and polyester mesh, emulsions, and frame sizes. Also manufacture fiber optics laser cut stencils. ITAR Registered.
2013 Exhibitor Directory

Micross Components • Booth # 721
7725 N Orange Blossom Trail, Orlando, FL 32810 USA
(P) 407-298-7100
(E) scott.smith@micross.com
(W) americas.micross.com

Micross Components is a leading global provider of distributed and specialty electronic components for military, space, medical, and demanding industrial applications. Operating as a single source for high reliability and state of the art electronics, Micross’ solutions range from bare die and wafer processing to advanced and custom packaging to component modifications and related interconnect offerings. With a 35+ year heritage, Micross possesses the design, manufacturing and logistics expertise needed to support an application from start to finish.

Midas Technology, Inc. • Booth # 803
400 West Cummings Park Ste. 6400, Woburn, MA 01801-6533 USA
(P) 781-938-0069
(E) sales@midastechnology.com
(W) www.midastechnology.com

Since 1986 Midas has specialized in advanced rework equipment. Our de-lidder(TM) machines remove lids from hermetic packages leaving reseal-ready surfaces and a particle-free package cavity. Midas HGRS (HOT Gas) Rework Systems quickly and safely remove epoxied and eutectic-bonded die, using precisely targeted jets of high temperature nitrogen.

Minco Technology Labs, LLC • Booth # 309
1805 Rutherford Lane, Austin, TX 78754 USA
(P) 512-339-3474
(E) kristi.cooper@mincotech.com
(W) www.mincotech.com

Mini-Systems, Inc. • Booth # 412
20 David Rd. RD. Box 69, N. Attleboro, MA 02761-0069 USA
(P) 508-695-0203
(E) ctourgee@mini-systemsinc.com
(W) www.mini-systemsinc.com

For over 44 years, MSI has been supplying superb quality and on-time deliveries. Absolute tolerances starting at 0.005% and TCR’s at 2ppm/C. Case sizes start at 0101. Standard deliveries under 2 weeks. MSI is ISO 9001 certified and is on the QPL for MIL-PRF-55342 and MIL-PRF-32159.

NAMICS Corporation • Booth # 611
2055 Gateway Place, Suite 480, San Jose, CA, 95110 USA
(P) 408-516-4611
(E) sales@namics-usa.com
(W) www.namics-usa.com

NAMICS CORPORATION is a leading source for underfills, encapsulants, adhesives, and insulating and conductive materials used by producers of semiconductor devices, passive components and solar cells. NAMICS subsidiary, DIEMAT, Inc. located in Byfield, MA, is the Namics North American R&D center specializing in the development of innovative thermally conductive adhesives and specialty glasses. Headquartered in Niigata, Japan with subsidiaries in the USA, Europe, Singapore, Korea, Taiwan and China, NAMICS serves its worldwide customers with enabling products for leading edge applications.

Natel Electronic Manufacturing Services, Inc. • Booth # 505
9340 Owensmouth Ave., Chatsworth, CA 91311-6915 USA
(P) 818-734-6553
(E) jangeloni@natelems.com
(W) www.natelems.com

The leading manufacturer of LTCC/AIN Multilayer Substrates and Packages, RF/Microwave MIC(s), Hybrids, MCM’s and Higher Level Assemblies for the Defense, Aerospace, Medical, RR/Microwave, Fiber Optic/ Optoelectronic, Telecommunications and Test & Measurement Industries.

Neu Dynamics Corporation • Booth # 712
110 Steamwhistle Drive, Ivyland, PA 18974 USA
(P) 215-355-2460
(E) donjohnson@neudynamics.com
(W) www.neudynamics.com

NDC is an ISO certified company specializing in design, manufacturing and sales of Tooling, Molds, Die and special equipment used in building Semiconductors, electronic components and a wide variety of devices used in automotive, telecommunications, solar and medical applications.

Newport Corporation • Booth # 416
101 Billerica Ave, Bldg 3, North Billerica, MA 01862-1256 USA
(P) 978-667-9449
(E) jon.medernach@newport.com
(W) www.newport.com

Newport is a leading supplier of high precision dispense and assembly equipment for the microelectronics industry offering systems for the manufacture of Microwave, Optical, MCM’s and MEM’s devices. Newport products support multiple interconnect technologies, including epoxy die bonding, eutectic attach, flip chip and thermocompression bonding.
NorCom Systems, Inc. • Booth # 613
1055 West Germantown Pike, Norristown, PA 19403 USA
(P) 610-592-0167
(E) caubertin@norcomsystemsinc.com
(W) www.norcomsystemsinc.com
NorCom Systems, Inc. manufactures advanced optical leak test systems for hermetically sealed packages. The NorCom 2020 provides automated gross and fine leak testing performed simultaneously. The new NorCom Model 410, is a low cost single device test system that inspects parts for gross leaks with air pressure only. Package types that can be inspected include MEMS, PC board-mounted devices, Hybrids, crystal oscillators, and Hi-Rel.

Nordson DAGE • Booth # 701
2470 Bates Ave, Concord, CA 94520 USA
(P) 925-246-1662
(E) Aram.Kardjian@nordsondage.com
(W) www.nordsondage.com
The new Nordson DAGE 4000 Optima has been designed for high throughput bond testing primarily for the production, manufacturing and test environment. Designed around the test operator, it has comfortable padded joystick control keypads and dual microscope arm for vibration reduction. The Paragon software which drives the system has been optimized for fast test speeds, exceeding any previous test platforms.

NOVA Integration Solutions, Inc. (NIS) • Booth # 323
19 East 17th Street, Saint Cloud, FL 34769 USA
(P) 407-556-3934
(E) mmartyniak@novaintegration.com
(W) www.novaintegration.com
Develops custom packaging required by sophisticated electronic equipment typically installed in mil-grade enclosures & chassis such as ATRs and LRUs. Specialized carbon fiber materials and custom heat frames are used to produce light weight solutions with advanced thermal management at the PCB level through to the system enclosure in support applications exposed to extreme temperatures and vibration.

nScrypt Inc. • Booth # 716
12151 Research Parkway, #150, Orlando, FL 32826 USA
(P) 407-275-4720
(E) info@nscrypt.com
(W) www.nscrypt.com
nScrypt sells 3D printing and micro-dispensing platforms with 3 to 6 axis of motion. nScrypt’s SmartPump™ technology dispenses a wide range of materials to include epoxies, solders, conductive polymers and pastes. The fine line ability to reach 50 microns and less in line widths and dots of 75 microns and less enables many next generation packaging applications. They also excel at printed conformal antennas.

NTK Technologies • Booth # 719
3979 Freedom Circle Drive, Suite 320, Santa Claraa, CA 95054 USA
(P) 408-727-5180
(E) mstoops@ntktech.com
(W) www.ntktech.com
NTK Technologies is a leader in IC Organic and Ceramic Packaging. With global service centers, NTK offers a wide range of packaging materials and design services for Opto, FPGA, CPU, MPU, MCM, RF, CMOS Image Sensors, Hi-Rel, Satellite, Automotive and Medical applications. Optimum package designs for 10G, 40G, and 100G.

Oneida Research Services, Inc. • Booth # 422
8282 Halsey Road, Whitesboro, NY 13492 USA
(P) 315-736-5480
(E) dadelluomo@orslabs.com
(W) www.orslabs.com
ORS offers analytical techniques to maintain and improve the quality of microelectronic components. Instrumentation/services: Residual Gas Analysis, Hermeticity, Failure Analysis, Construction Analysis, Destructive Physical Analysis, Surface Analysis, FTIR, GC/MS, C-SAM, FeSEM, SEM/EDS, Real Time X-ray Radiography, XRF and Solder Rework/Moisture Sensitivity Testing.

Pacific Trinetics Corporation, Inc. • Booth # 621
10542 Calle Lee, #114, Los Alamitos, CA 90720 USA
(P) 714-484-8015
(E) Foad@ptchips.com
(W) www.ptchips.com
Manufacturer of ceramic tape processing equipment

Palomar Technologies, Inc. • Booth # 511
2728 Loker Ave. West, Carlsbad, CA 92010 USA
(P) 760-931-3600
(E) jsylvester@bonders.com
(W) www.palomartechnologies.com
Palomar Technologies, a former subsidiary of Hughes Aircraft, is the global leader of automated high-accuracy, large work area die attach and wire bond equipment and precision contract assembly services. Customers utilize the products, services and solutions from Palomar Technologies to meet their needs for optoelectronic packaging, complex hybrid assembly and micron-level component attachment. For more information, visit www.palomartechnologies.com.

Perfection Products, Inc. • Booth # 515
1320 Indianapolis Avenue, Lebanon, IN 46052 USA
(P) 765-482-7786
(E) sales@perfection-products.com
(W) www.perfection-products.com
Perfection Products manufactures Process Magazines and Carriers. Such products are Film Frames, Grip Rings, Magazines for Frames and Rings. Lead Frame Magazines, Process Boats (formed & flat style) & Magazines, Antistatic Shippers for Frames and Rings. Also, available are the 12.0” (300 mm) Wafer Frames and Magazines. Perfection – Accept Nothing Less
Photofabrication Engineering, Inc. (PEI) • Booth # 318

500 Fortune Boulevard, Milford, MA 01757 USA
(P) 508-478-2025
(E) sales@photofabrication.com
(W) www.photofabrication.com

PEI is the world leader in manufacturing custom photo-etched lead frames, chip carriers, surface-mount/hybrid components, EMI/RF shielding, and lids for seam-sealed hermetic devices. All of our products are made in the USA. PEI is ITAR, ISO9001, and AS9100 certified.

Plasma-Therm, LLC • Booth # 111

10050 16th Street North
St. Petersburg, FL 33716 USA
(P) 727-577-4999
(E) information@plasmatherm.com
(W) www.plasmatherm.com

Established in 1974, Plasma-Therm is a U.S. manufacturer of advanced plasma processing equipment focusing on research and development systems to high volume production in specialty semiconductor markets including solid state lighting, power, data storage, renewable energy, MEMS, nanotechnology, photonics, wireless communication and advanced photomask etching. Offering leading etching and deposition technologies and solutions for these markets, customers have recognized Plasma-Therm for the last 14 years for their products and service with VLSIresearch awards. Sales and service locations throughout North America, Europe and Asia Pacific, meet the diverse needs of Plasma-Therm’s global base of over 600 customers. For further information please visit www.plasmatherm.com.

Polysciences, Inc. • Booth # 620

400 Valley Rd., Warrington PA 18976 USA
(P) 215-343-6484
(E) info@polysciences.com
(W) www.polysciences.com

Polysciences, Inc. produces a unique array of microelectronic grade encapsulants, adhesives, coatings and potting compounds to meet the high performance requirements of the electronic and semiconductor industries.

The Prince & Izant Companies • Booth # 105

12999 Plaza Drive, Cleveland, OH 44130 USA
(P) 216-362-7000
(E) request@princeizant.com
(W) www.princeizant.com

Prince and Izant is recognized as a premier supplier of Au, Ag, Pt, and other alloys used in the production of Microelectronic components and Semiconductor materials. Forms included but are not limited to: strip/foil, powder, paste, and preforms (i.e. washers, frames, shims, pins). AS9100/ ISO 9001 certified.

Quik-Pak • Booth # 518

10987 Via Frontera, San Diego, CA 92127 USA
(P) 858-674-4676
(E) casey@icproto
(W) www.icproto.com

Quik-Pak, a division of Delphon, provides IC packaging and assembly services. The company’s newest offering is its OmPP package. These pre-molded QFN packages are cost-effective, come in a variety of sizes and are ideal for prototype or production volume applications. Quik-Pak also specializes in a variety of services that together provide a full turn-key packaging and assembly solution including wafer preparation, die/wire bonding, remodeling and marking/branding. Custom assembly services are also offered for Flip Chip, Ceramic Packages, Chip-on-Board, Stacked Die, MEMS, etc.

Reldan Metals Co div of Abington Reldan Metals, LLC • Booth # 305

550 Old Bordentown Road, Fairless Hills, PA 19030 USA
(P) 800-764-9222
(E) sales@armetals.com
(W) www.ARmetals.com

Maximizing Value From Precious Metal Scrap® Reldan Metals Co. Div. of Abington Reldan Metals, LLC refinery has been operating and handling precious metal scrap for over 30 years. Our State of the Art LEED certified facility by the U.S. Green Building Council is ISO 14001:2004 certified, zero discharge, e-Steward certified, R2 certified, ITAR registered and CHWMEG reviewed. LEED certification sets forth strict standards for energy-efficient and environmentally responsible workplaces. Abington Reldan Metals has the capability to handle all types of scrap using various methods such as pyrometallurgical, hydrometallurgical, mechanical reduction, melting and others. Depending on the type of scrap generated there are specific techniques we use to recover the highest value from your scrap.

Desich SMART Center, RESEARCH LAB CORRIDOR • Booth # 626

151 Innovation Drive, Elyria, OH 44035 USA
(P) 440-366-7241
(E) matt@smartmicrosystems.com
(W) www.smartmicrosystems.com

The Desich SMART Center is a microsystem package, assembly, and test development foundry. Located in Elyria, Ohio, the Desich SMART Center develops manufacturable packaging integration solutions for customers developing next-generation microsystem products by leveraging world-class facilities and a highly experienced engineering team to accelerate product time to market.

Riv, Inc. • Booth # 700

31 Railroad Ave, Merrimack, NH 03054-4121 USA
(P) 603-424-0510
(E) tania@rivinc.com
(W) www.rivinc.com

A Leading Manufacturer of Fine Line ThickFilm Printing Screens. Catering to the Hybrid Microelectronics and Solar Industries. As well as any other Printing related Industry. Family/Women owned and Operated since 1986
2013 Exhibitor Directory

IMAPS 2013 • 46th Annual Symposium on Microelectronics

Royce Instruments, Inc. • Booth # 516
831 Lator Court, Suite C, Napa, CA 94558 USA
(P) 707-255-9078
(E) sales@royceinstruments.com
(W) www.royceinstruments.com

Celebrating its 30th anniversary of US manufacturing, Royce products have excellent reputations for performance and reliability. The 600 Series Bond Test Instruments offer extensive SPC and data sharing options (see in action with trinocular microscope at booth 516). Quick change-over die sorters excel with critical geometry, fragile die. Fully-automatic with wafer-mapping or semi-automatic.

Rudolph Technologies, Inc. • Booth # 519
One Rudolph Road, Flanders, NJ 07836 USA
(P) 973-696-1300
(E) info@rudolphtech.com
(W) www.rudolphtech.com

Rudolph Technologies is a leader in the design, development, manufacture and support of defect inspection, advanced packaging lithography, process control metrology, and data analysis systems and software used by semiconductor device manufacturers worldwide. Rudolph provides a full-fab solution through its proprietary products that provide critical yield-enhancing information.

Sales & Service, Inc. • Booth # 314
4883 E. La Palma Ave. #505, Anaheim, CA 92807 USA
(P) 714-696-5332
(E) chris@salesandserviceinc.com
(W) www.salesandserviceinc.com

Realizing the need for a service and a relationship based representative company, Bill Winn founded Sales & Service Incorporated in 1989. Located in the heart of Orange County, SSI has emerged as a proven and dedicated manufacturer’s representative for over 20 years.

SANTIER Thermal Management Solutions • Booth # 420
10113 Carroll Canyon Road, San Diego, CA 92131 USA
(P) 858-837-1591
(E) leonard.klun@santier.com
(W) www.santier.com

SANTIER is a San Diego based world-class designer and manufacturer of microelectronic housings & assemblies. We are integrated in the manufacturing of metal matrix composites, multilayer high temperature cofired ceramic, assembly and plating. All these capabilities are all operating under one facility----- a truly unique and differentiating position that ensures quality and accountability. Our custom thermal management products span the aerospace, defense, medical, telecom, communication and many other industries around the world.

Sefar, Inc. • Booth # 204
111 Calumet Street, Buffalo, NY 14221 USA
(P) 800-995-0531
(E) sales@sefar.us
(W) www.sefar.us

We make screens! Sefar, Inc. is the premier manufacturer of precision electronic screen printing screens. Along side our comprehensive and diversified mesh line, Sefar offers electronics screen fabrication services. Whether you’re looking simply for stretched screens, coated or imaged screens or for help with artwork generation, using our 20,000 dpi photo plotter, Sefar can engineer your screen build specifically to your application. Sefar, Inc. has three US facilities to serve you - Buffalo, NY - Ontario, California - Kansas City, Missouri. More information about Sefar can be found on our website at www.sefar.us or stop by our booth #204 to find out more!

Semi Dice, Inc. • Booth # 707
10961 Bloomfield Street, P.O. Box 3002, Los Alamitos, CA 90720 USA
(P) 562-594-4631
(E) dminter@semidice.com
(W) www.semidice.com

Semi Dice is the world leading distributor for wafer and die products. Extensive inventory for both Active & Passive lines that include Analog Devices, Central Semi, Cree, Inc., Fairchild Semiconductor, Freescale Semiconductor, International Rectifier, ISSI, Microsemi Corp, National Semiconductor, ON Semi, NXP, Vishay, IRC Advanced Film Division, Johanson Dielectrics and many others. Value-added services include wafer processing and Class H, K and T testing.

Semiconductor Equipment Corporation • Booth # 410
5154 Goldman Avenue, Moorpark, CA 93021 USA
(P) 805-529-2293
(E) sales@semicorp.com
(W) www.semicorp.com

Semiconductor Equipment Corporation Manufacturer and distributor of manual, semiautomatic, and automatic equipment for the Photonics, Semiconductor, MEMS, SMT and Hybrid Industries. Back end products include flip-chip bonders, ultrasonic die bonders, laser diode bonders, eutectic die bonders, manual pick & place, epoxy die bonders, die rework, dicing tape, manual and automatic dicing tape applicators, UV tape curing system, backgrinding tape, backgrinding tape applicators, backgrinding tape peelers, and die ejectors. Front end products include semiautomatic and fully automatic cassette, SMIF, RSP FOSS, FOUP, and EUV pod cleaning systems and cleaning wafers for vacuum and e-chucks.

Sikama International, Inc. • Booth # 816
118 E. Gutierrez Street, Santa Barbara, CA 93101 USA
(P) 805-962-1000
(E) phil@sikama.com
(W) www.sikama.com

Sikama International designs, manufactures, and markets solder reflow & curing systems, wafer flux coaters and wafer washers. Our ovens feature a patented conduction plus convection heating technology and are used for Wafer Bumping, LED Die Reflow, BGA Re-ballng, High Density Package Reflow, Lid Attach, Fluxless Gold Tin Reflow, Lead Frame Reflow and Curing among many other applications.
Sonoscan, Inc. • Booth # 709
2149 E. Pratt Boulevard, Elk Grove Village, IL 60007 USA
(P) 847-437-6400
(E) info@sonoscan.com
(W) www.sonoscan.com

Sonoscan® is a leader and innovator in Acoustic Microscopy technology. Sonoscan manufactures acoustic microscope systems and provides laboratory services to nondestructively inspect and analyze microelectronic materials, devices, etc. Sonoscan’s C-SAM® systems provide unmatched accuracy for the inspection of microelectronics for hidden internal defects that affect short and long-term reliability.

SOURIAU PA&E • Booth # 610
434 Olds Station Rd., Wenatchee, WA 98801 USA
(P) 509-295-5200
(E) rkakowski@pacaero.com
(W) www.pacaero.com

SOURIAU PA&E specializes in hermetic connectors and electronic packaging that meet the exacting standards for the reliability mission-critical systems require. We use unique materials in our manufacturing processes and offer a range of capabilities at a single location. This integrated manufacturing approach can reduce complexity and risk on your next project.

SST International • Booth # 304
9801 Everest Street, Downey, CA 90242
(P) 610-451-1076
(E) bwilson@sstinternational.com
(W) www.sstinternational.com

SST manufactures vacuum-pressure furnaces for high-reliability microelectronic package assembly. SST’s furnaces create void-free solder joints without flux. Applications include eutectic die attach, hermetic package sealing, lead-free soldering, fiber-optic component soldering, glass-to-metal sealing, high temperature brazing, high vacuum MEMS package sealing with getter activation and solar cell void-free attach.

Souriau PA&E specializes in hermetic connectors and electronic packaging that meet the exacting standards for the reliability mission-critical systems require. We use unique materials in our manufacturing processes and offer a range of capabilities at a single location. This integrated manufacturing approach can reduce complexity and risk on your next project.

Technic Inc • Booth # 205
300 Park East Drive, Woonsocket, RI 02895 USA
(P) 401-769-7000
(E) droza@technic.com
(W) www.technic.com

Certified facility, manufactures metal powders and flakes for the electronics, electrical, jewelry, medical, dental and other industries. Our team of customer driven chemists, engineers, and technicians operate out of a 93,000 sq. ft. (8,640 Sq. m.) facility located in Woonsocket, Rhode Island, USA. With over 60 years of experience in the industry, Technic can analyze your application requirements and develop new or customized products as well as modify existing products to fit your specific application needs.

Teledyne Microelectronic Technologies, Inc. • Booth # 501
12964 Panama Street, Los Angeles, CA 90066 USA
(P) 310-574-2068
(E) sfletcher@teledyne.com
(W) www.teledyne.com

Teledyne Microelectronic Technologies offers innovative approaches in the packaging of high-density, high-reliability, advanced microelectronics. We specialize in RF/Microwave devices to 65 GHz, optical devices beyond 100 Gbps, analog/digital, power and LED illumination for aerospace, military and industrial applications. ISO9001:2008, MIL-PRF-38534 Class “H” and “K” and a DoD Trusted Source for Microelectronics Packaging, Assembly and Test.

Torrey Hills Technologies, LLC • Booth # 408
6370 Lusk Blvd., Suite F-111, San Diego, CA 92121 USA
(P) 858-558-6666
(E) kkuang@torreyhillstech.com
(W) www.torreyhillstech.com

Torrey Hills Technologies is a California based manufacturer of tungsten-copper, molybdenum-copper, Cu/Mo/Cu and Cu/Mo70Cu/Cu heat sinks. These products have high thermal conductivity and provide excellent CTE matches. The company is also distributor of conveyor belt furnaces, including fast fire and infrared furnaces for drying, firing, brazing and many other applications.

Towa Corporation • Booth # 312
350 Woodview Ave, Suite 200, Morgan Hill, CA 95037 USA
(P) 408-779-4440
(E) ltripp@towa-usa.com
(W) www.towa japan.co.jp

Towa Corporation, the market leader, providing leading edge molding solutions to the semiconductor industry over 30 years is offering the latest compression mold solutions for advanced applications including wafer level & Panel-Scale, 3D(TSV) & 2.5D with mold under-fill, SIP and MEMS, plus LED for silicon lens and wafer molding. Towa’s molding solution have proven to be the most cost effective and technologically-advanced for demanding applications.
Trebor Instrument Corp. • Booth # 404
39 Balsam Drive, Huntington Station, NY 11746 USA
(P) 631-293-8127
(E) treborinst@hotmail.com
(W) www.treborinst.com

Tresky Corporation • Booth # 708
704 Ginesi Drive, Suite 11A, Morganville, NJ 07751 USA
(P) 732-536-8600
(E) a.well@tresky.com
(W) www.tresky.com

Manufacturer of Manual, Semi-Automated and Fully-Automated Die Bonders, Flip Chip Bonders and Die Sorting Systems

University Booth: Cal Poly University • Booth 823
Dept of Industrial & Manuf. Engr.
1 Grand Avenue, San Luis Obispo, CA 93407
(P) 805-756-2540
(E) pan@calpoly.edu
(W) calpoly.edu

University Booth: Idaho Student Chapters • Booth #: 821
Electrical & Computer Engineering Department, P.O. Box 441023, Moscow, ID 83844-1023
(P) 208-885-6504
(E) elshabini@uidaho.edu
(W) www.engr.uidaho.edu

University Booth: University of Maryland • Booth #: 819
CALCE, Room 1103, Engineering Laboratory Building, College Park, MD 20742
(P) 301-405-7770
(E) diganta@gmail.com
(W) www.calce.umd.edu

U.S. Tech • Booth # 806
10 Gay Street, Phoenixville, PA 19460 USA
(P) 610-783-6100
(E) ustech@gim.net
(W) www.us-tech.com

As we enter our 27th year, US Tech has become the major global publication for the electronics industry. In 2011 we introduced our digital edition which we e-mail it to our E-Readers worldwide. We also were granted an Apple App. where readers who have an Apple device can download it free of charge. Subscriptions to our digital edition through our website and App. downloads have been increasing since January 1, 2011.

UTZ Technologies • Booth # 817
4 Peckman Rd., Little Falls, NJ 07424 USA
(P) 973-339-1100
(E) cad@utz.com
(W) www.utz.com

UTZ Technologies, For over 50 years UTZ has been the industry leader in SMT stencils and thick film screens. Our electroform stencils offer superior paste release. Our Swiss mesh screens offer unbeatable repeatability

West Bond, Inc. • Booth # 300
1551 South Harris Ct., Anaheim, CA 92806 USA
(P) 714-978-1551
(E) rstraight@westbond.com
(W) www.westbond.com

XYZTEC • Booth # 423
36 Balch Ave, Groveland, MA 01834 USA
(P) 978-880-2598
(E) tom.haley@xyztec.com
(W) www.xyztec.com

XYZTEC is the worldwide technology leader in bond testing. Among other tests, our system can measure wire bond strength, die shear strength, solder ball strength, strength of various epoxies and solders, bend testing circuit boards, fatigue testing, wire shear strength, substrate peel testing, tweezers pull etc. The Condor Sigma employs our Revolving Measurement Unit (RMU) which can hold up to six different sensors, allowing operators almost instant test changeovers. Our latest innovation is an automation capability that utilizes fiducial pattern recognition.

YINCAE Advanced Materials, LLC • Booth # 818
19 Walker Way, Albany, NY 12205 USA
(P) 518-452-2880
(E) gyelle@yincae.com
(W) www.yincae.com

YINCAE Advanced Materials, LLC is a developer, manufacturer and supplier of high performance coatings, adhesives, electronic and optoelectronic materials. YINCAE products are mainly involved in: solder joint encapsulant, underfill materials, board-level assembly materials, die attach adhesives, optical adhesives, nanofilm, anti-warpage materials, thermal interface materials and conformal coatings.

Zeon Corporation • Booth # 419
4111 Bells Lane, Louisville, KY 40211 USA
(P) 502-775-2027
(E) shoulders@zeonchemicals.com
(W) www.zeonchemicals.com

Zeon Corporation/Zeon Chemicals L.P., USA have developed two innovative state-of-the-art packaging materials: 1) “Ultra-Low Loss Build-Up Film” for high speed IC packages and WLP requiring superior electrical properties, and 2) “Ultra-Low Loss PCB Materials” for high speed servers and RF/mobile applications for technology leading devices.
3D IC and Packaging Technologies, TSV, TGV	BOOTH #
CVInc ... 317
Endicott Interconnect Technologies ... 200
ENRG Incorporated 215
Fraunhofer IZM 426
Georgia Tech PRC 726
IBM ... 418
Interconnect Systems, Inc 406
Neu Dynamics Corporation 712
nScrypt Inc 716
Palomar Technologies, Inc 511
Plasma-Therm, LLC 111
Quik-Pak .. 518
Rudolph Technologies, Inc 519
Sonoscan, Inc 709
Towa Corporation 312
YINCAE Advanced Materials 818

Assembly Equipment-tools, fixtures, dispensing & rework equipment

ATV Technologie GmbH 322
CVInc ... 317
Finetech .. 508
Georgia Tech PRC 726
Kulicke & Soфа Industries Inc 705
Midas Technology, Inc 803
Neu Dynamics Corporation 712
nScrypt Inc 716
Palomar Technologies, Inc 511
Perfection Products, Inc 515
Semiconductor Equipment Corporation ... 410
TDK Corporation 804
Towa Corporation 312
Trebor Instrument Corp 404
Tresky Corporation 708
UTZ Technologies 817

Chemicals and Gases – photochemicals	BOOTH #
Metalar Technologies USA 807
Technic Inc 205

Cleaning equipment, not including chemicals

ATV Technologie GmbH 322
BSET EQ ... 322
Gelb Refining Corp 609
Neu Dynamics Corporation 712

Computer Design, CAD/CAM-design services

Infinite Graphics 206
Neu Dynamics Corporation 712
NOVA Integration Solutions, Inc (NIS) ... 323
The Prince & Izant Companies 105
UTZ Technologies 817

Connectors, lead forming and frames

Interconnect Systems, Inc 406
Neu Dynamics Corporation 712
NOVA Integration Solutions, Inc (NIS) ... 323
Photofabrication Engineering, Inc (PEI) 318
The Prince & Izant Companies 105
Sonofab P&E 610
Trebor Instrument Corp 404

Dicing & Die attachment equipment

ATV Technologie GmbH 322
Finetech .. 508
Neu Dynamics Corporation 712
Perfection Products, Inc 515
Plasma-Therm, LLC 111
Semiconductor Equipment Corporation ... 410
Towa Corporation 312
Trebor Instrument Corp 404

Electronic Packages & Packaging

AdTech Ceramics 800
Al Technology, Inc 400
ATV Technologie GmbH 322
Center for Nanoscale Science & Eng., North Dakota State University 327
CeramTec GmbH 307
Coating, Inc., an Ametek Company 614
Colorado Microcircuits Inc 315
Conductive Containers Inc 313
CVInc .. 317
DuPont Microcircuit Materials 520
Endicott Interconnect Technologies 200
Fraunhofer Institute for Ceramic Technologies and Systems IKTS ... 526
Fraunhofer IZM 426
Georgia Tech PRC 726
IBM ... 418
Metalar Technologies USA 807
Micro Components 721

Electronic Packages & Packaging	BOOTH #
Nefal Electronic Manufacturing Services ... 505
Neu Dynamics Corporation 712
NorCom Systems, Inc 613
NOVA Integration Solutions, Inc (NIS) ... 323
nScrypt Inc 716
NTK Technologies 719
Palomar Technologies, Inc 511
Photofabrication Engineering, Inc (PEI) ... 318
Quik-Pak .. 518
Sonofab P&E 610
Torrey Hills Technologies, LLC 408
Towa Corporation 312
UTZ Technologies 817
YINCAE Advanced Materials 818

Electronic Microscopy Services, analytical services

Center for Nanoscale Science & Eng., North Dakota State University 327
Fraunhofer IZM 426
Georgia Tech PRC 726
Hi-Rel Laboratories 612
Oneida Research Services, Inc 422
Sonoscan, Inc 709

Environmental Control-clean rooms

Conductive Containers Inc 313
Georgia Tech PRC 726

Epoxies & Adhesives

AI Technology, Inc 400
Coating, Inc., an Ametek Company 614
Indium Corporation 409
LORD Corporation 600
NAMICS Corporation 611
Polysciences, Inc 620

Failure Analysis

ATV Technologie GmbH 322
BSET EQ ... 322
Center for Nanoscale Science & Eng., North Dakota State University 327
Endicott Interconnect Technologies 200
Fraunhofer IZM 426
Hi-Rel Laboratories 612
IBM ... 418
Nordson DAGE 701
Oneida Research Services, Inc 422
The Prince & Izant Companies 105
Sonoscan, Inc 709

Furnace Equipment-materials handling

ATV Technologie GmbH 322
Harrop Industries, Inc 714
The Prince & Izant Companies 105
Torrey Hills Technologies, LLC 408
Products and Services Directory

Hybrid/SMT – Manufacturing circuit boards and flex circuit manufacturing

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSET EQ</td>
<td>322</td>
</tr>
<tr>
<td>DuPont Microcircuit Materials</td>
<td>520</td>
</tr>
<tr>
<td>Endicott Interconnect Technologies</td>
<td>200</td>
</tr>
<tr>
<td>Fraunhofer IZM</td>
<td>426</td>
</tr>
<tr>
<td>Micro Hybrid Dimensions, Inc.</td>
<td>414</td>
</tr>
<tr>
<td>Natel Electronic Manufacturing Services</td>
<td>505</td>
</tr>
<tr>
<td>Palomar Technologies, Inc.</td>
<td>511</td>
</tr>
<tr>
<td>Photofabrication Engineering, Inc. (PEI)</td>
<td>318</td>
</tr>
<tr>
<td>UTZ Technologies</td>
<td>817</td>
</tr>
<tr>
<td>YINCAE Advanced Materials</td>
<td>818</td>
</tr>
</tbody>
</table>

Inspection Equipment and Services

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSET EQ</td>
<td>322</td>
</tr>
<tr>
<td>Center for Nanoscale Science & Eng., North Dakota State University</td>
<td>327</td>
</tr>
<tr>
<td>Hi-Rel Laboratories</td>
<td>612</td>
</tr>
<tr>
<td>Infinite Graphics</td>
<td>206</td>
</tr>
<tr>
<td>Neu Dynamics Corporation</td>
<td>712</td>
</tr>
<tr>
<td>Nordson DAGE</td>
<td>701</td>
</tr>
<tr>
<td>Oneida Research Services, Inc.</td>
<td>422</td>
</tr>
<tr>
<td>Palomar Technologies, Inc.</td>
<td>511</td>
</tr>
<tr>
<td>The Prince & Izant Companies</td>
<td>105</td>
</tr>
<tr>
<td>Rudolph Technologies, Inc.</td>
<td>519</td>
</tr>
<tr>
<td>Sonoscan, Inc.</td>
<td>709</td>
</tr>
<tr>
<td>Trebor Instrument Corp.</td>
<td>404</td>
</tr>
</tbody>
</table>

Lasers-cutting, scribing, trimming, marking, welding & supplies

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeramTec GmbH</td>
<td>307</td>
</tr>
<tr>
<td>Neu Dynamics Corporation</td>
<td>712</td>
</tr>
<tr>
<td>Perfection Products, Inc.</td>
<td>515</td>
</tr>
<tr>
<td>The Prince & Izant Companies</td>
<td>105</td>
</tr>
<tr>
<td>Souriau P&E</td>
<td>610</td>
</tr>
</tbody>
</table>

Machining-trimming and scribing non-laser

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeramTec GmbH</td>
<td>307</td>
</tr>
<tr>
<td>Neu Dynamics Corporation</td>
<td>712</td>
</tr>
<tr>
<td>NOVA Integration Solutions, Inc. (NIS)</td>
<td>323</td>
</tr>
<tr>
<td>The Prince & Izant Companies</td>
<td>105</td>
</tr>
<tr>
<td>Souriau P&E</td>
<td>610</td>
</tr>
<tr>
<td>Stellar Industries Corp.</td>
<td>401</td>
</tr>
</tbody>
</table>

Reflow Equipment

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATV Technologie GmbH</td>
<td>322</td>
</tr>
<tr>
<td>BSET EQ</td>
<td>322</td>
</tr>
<tr>
<td>Mids Technology, Inc.</td>
<td>803</td>
</tr>
<tr>
<td>Palomar Technologies, Inc.</td>
<td>511</td>
</tr>
<tr>
<td>Sikama International, Inc.</td>
<td>816</td>
</tr>
<tr>
<td>Torrey Hills Technologies, LLC</td>
<td>408</td>
</tr>
<tr>
<td>Tresky Corporation</td>
<td>708</td>
</tr>
</tbody>
</table>

Solder-pastes & creams

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indium Corporation</td>
<td>409</td>
</tr>
<tr>
<td>The Prince & Izant Companies</td>
<td>105</td>
</tr>
</tbody>
</table>

Screen Printers, Screens & Stencils

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geib Refining Corp.</td>
<td>609</td>
</tr>
<tr>
<td>Hary Manufacturing Inc. (HMI)</td>
<td>500</td>
</tr>
<tr>
<td>Infinite Graphics</td>
<td>206</td>
</tr>
<tr>
<td>MicroScreen, LLC</td>
<td>523</td>
</tr>
<tr>
<td>Riv, Inc.</td>
<td>700</td>
</tr>
<tr>
<td>Sefar, Inc.</td>
<td>204</td>
</tr>
</tbody>
</table>

Semiconductors-distributors & manufacturers

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Dicing Technologies, Inc.</td>
<td>517</td>
</tr>
<tr>
<td>BSET EQ</td>
<td>322</td>
</tr>
<tr>
<td>Conductive Containers Inc.</td>
<td>313</td>
</tr>
<tr>
<td>Indium Corporation</td>
<td>409</td>
</tr>
<tr>
<td>Interconnect Systems, Inc.</td>
<td>406</td>
</tr>
<tr>
<td>Micross Components</td>
<td>721</td>
</tr>
<tr>
<td>Minco Technology Labs, LLC</td>
<td>309</td>
</tr>
<tr>
<td>Palomar Technologies, Inc.</td>
<td>511</td>
</tr>
<tr>
<td>The Prince & Izant Companies</td>
<td>105</td>
</tr>
<tr>
<td>SemiDice, Inc.</td>
<td>707</td>
</tr>
</tbody>
</table>

Substrates-shapes

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdTech Ceramics</td>
<td>800</td>
</tr>
<tr>
<td>CeramTec GmbH</td>
<td>307</td>
</tr>
<tr>
<td>ENRG Incorporated</td>
<td>215</td>
</tr>
<tr>
<td>Georgia Tech PRC</td>
<td>726</td>
</tr>
<tr>
<td>Infinite Graphics</td>
<td>206</td>
</tr>
<tr>
<td>Natel Electronic Manufacturing Services</td>
<td>505</td>
</tr>
<tr>
<td>NTK Technologies</td>
<td>719</td>
</tr>
<tr>
<td>The Prince & Izant Companies</td>
<td>105</td>
</tr>
<tr>
<td>Stellar Industries Corp.</td>
<td>401</td>
</tr>
</tbody>
</table>

Surface Mount/Hybrid Components

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductive Containers Inc.</td>
<td>313</td>
</tr>
<tr>
<td>Fraunhofer IZM</td>
<td>426</td>
</tr>
<tr>
<td>Palomar Technologies, Inc.</td>
<td>511</td>
</tr>
<tr>
<td>Photofabrication Engineering, Inc. (PEI)</td>
<td>318</td>
</tr>
<tr>
<td>Technic Inc.</td>
<td>205</td>
</tr>
<tr>
<td>Torrey Hills Technologies, LLC</td>
<td>408</td>
</tr>
<tr>
<td>UTZ Technologies</td>
<td>817</td>
</tr>
</tbody>
</table>

Thick and/or Thin Film Materials-precious metals & polymers

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Technology, Inc.</td>
<td>400</td>
</tr>
<tr>
<td>Ceradyne VIOX, Inc., a 3M company</td>
<td>717</td>
</tr>
<tr>
<td>DuPont Microcircuit Materials</td>
<td>520</td>
</tr>
<tr>
<td>ESL ElectroScience</td>
<td>808</td>
</tr>
<tr>
<td>Ferro Corporation</td>
<td>615</td>
</tr>
<tr>
<td>Geib Refining Corp.</td>
<td>609</td>
</tr>
<tr>
<td>Georgia Tech PRC</td>
<td>726</td>
</tr>
<tr>
<td>Heraeus Thick Film Division</td>
<td>504</td>
</tr>
<tr>
<td>Indium Corporation</td>
<td>409</td>
</tr>
<tr>
<td>LORD Corporation</td>
<td>600</td>
</tr>
<tr>
<td>Metalar Technologies USA</td>
<td>807</td>
</tr>
<tr>
<td>The Prince & Izant Companies</td>
<td>105</td>
</tr>
<tr>
<td>Technic Inc.</td>
<td>265</td>
</tr>
<tr>
<td>UTZ Technologies</td>
<td>817</td>
</tr>
<tr>
<td>YINCAE Advanced Materials</td>
<td>818</td>
</tr>
</tbody>
</table>

Test Equipment-probes, probe cards & die sorting equipment

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSET EQ</td>
<td>322</td>
</tr>
<tr>
<td>Georgia Tech PRC</td>
<td>726</td>
</tr>
<tr>
<td>Neu Dynamics Corporation</td>
<td>712</td>
</tr>
<tr>
<td>NorCom Systems, Inc.</td>
<td>613</td>
</tr>
<tr>
<td>NTK Technologies</td>
<td>719</td>
</tr>
<tr>
<td>Royce Instruments, Inc.</td>
<td>516</td>
</tr>
<tr>
<td>Rudolph Technologies, Inc.</td>
<td>519</td>
</tr>
<tr>
<td>Sonoscan, Inc.</td>
<td>709</td>
</tr>
<tr>
<td>Trebor Instrument Corp.</td>
<td>404</td>
</tr>
</tbody>
</table>

Industry Publications

<table>
<thead>
<tr>
<th>Company Name</th>
<th>BOOTH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. TECH</td>
<td>806</td>
</tr>
</tbody>
</table>
Products and Services Directory

Other Products/Services

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Technology, Inc.</td>
<td>400</td>
<td>Thermal Products</td>
</tr>
<tr>
<td>ancosys Inc.</td>
<td>805</td>
<td>Wet chemical process monitoring and control</td>
</tr>
<tr>
<td>Beijing Tian-Long Tungsten & Molybdenum Co., Ltd.</td>
<td>213</td>
<td>Tungsten Copper heat sinks, Molybdenum Copper heat sinks, Cu/Mo/Cu(CMC), Cu/MoCU/Cu(CPC), Tungsten, Molybdenum and alloys.</td>
</tr>
<tr>
<td>Coining, Inc., an Ametek Company</td>
<td>614</td>
<td>Tape & Reel Packaging</td>
</tr>
<tr>
<td>Desich SMART Center</td>
<td>626</td>
<td>MEMS package, assembly, and test development services</td>
</tr>
<tr>
<td>ENErG Incorporated</td>
<td>215</td>
<td>Ultrathin flexible ceramic substrates and membranes.</td>
</tr>
<tr>
<td>Fraunhofer Institute for Ceramic Technologies and Systems IKTS</td>
<td>526</td>
<td>Smart Microsystems Thick film pastes Multilayer LTCC HTCC</td>
</tr>
<tr>
<td>Geib Refining Corp.</td>
<td>609</td>
<td>precious metal materials, refining, and reclaim</td>
</tr>
<tr>
<td>General Metal Finishing</td>
<td>310</td>
<td>Specification plating and electropolishing services</td>
</tr>
<tr>
<td>Harrop Industries, Inc.</td>
<td>714</td>
<td>Tape casting machines</td>
</tr>
<tr>
<td>Hary Manufacturing Inc. (HMI)</td>
<td>500</td>
<td>Substrate handling / automation equipment Infra Red conveyor dryers</td>
</tr>
<tr>
<td>Hesse Mechatronics, Inc.</td>
<td>605</td>
<td>thin wire wedge bonders, heavy wire wedge bonders, ribbon bonders</td>
</tr>
<tr>
<td>Hi-Rel Laboratories</td>
<td>612</td>
<td>Destructive Physical Analysis (DPA), Materials Analysis, Real-time X-ray, CSAM, FTIR, SEM/EDS, cross sectional analysis, Dye & Pry testing, Prohibited Materials Analysis (testing for pure tin surfaces), Construction analysis, PINO, Hermeticity</td>
</tr>
<tr>
<td>IBM</td>
<td>418</td>
<td>Packaging Joint Development Ecosystem</td>
</tr>
<tr>
<td>Infinite Graphics</td>
<td>206</td>
<td>Photomasks, 3D structures</td>
</tr>
<tr>
<td>Micross Components</td>
<td>721</td>
<td>Component Modification, including solder exchange, reballing and lead attach.</td>
</tr>
<tr>
<td>NAMICS Corporation</td>
<td>611</td>
<td>Underfills NCP NCF Dam and fill Non-conductive films Solar electrode paste</td>
</tr>
<tr>
<td>Natel Electronic Manufacturing Services</td>
<td>505</td>
<td>Custom microelectronics assembly, LTCC and ALN substrates & packages, Thick Film and Thin Film Mil-Std 38534 H and K qualified</td>
</tr>
<tr>
<td>NOVA Integration Solutions, Inc. (NIS)</td>
<td>323</td>
<td>Enclosure & chassis thermal and structural analysis.</td>
</tr>
<tr>
<td>Pacific Trinetics Corporation, Inc.</td>
<td>621</td>
<td>Manufacturer of Punch, Via Filler, Screen Printer, Stacker, Laminator & Cutting Equipments</td>
</tr>
<tr>
<td>Palomar Technologies, Inc.</td>
<td>511</td>
<td>Contract Manufacturing Wire Bond & Die Attach Training Process Development Consulting</td>
</tr>
<tr>
<td>Photofabrication Engineering, Inc. (PEI)</td>
<td>318</td>
<td>PEI specializes in etching custom products from base materials such as kovar, nickel, stainless steel, cold rolled steel, and titanium, with selective plating and other finishes.</td>
</tr>
<tr>
<td>Polysciences, Inc.</td>
<td>620</td>
<td>Custom Formulation of Adhesives, Coatings and Encapsulants</td>
</tr>
<tr>
<td>The Prince & Izant Companies</td>
<td>105</td>
<td>Metal Reclamation Manufacturing Stocking & Kitting Programs Technical Support</td>
</tr>
<tr>
<td>Reldan Metals Co div of Abington Reldan Metals LLC</td>
<td>305</td>
<td>Refiner Precious Metals</td>
</tr>
<tr>
<td>Rudolph Technologies, Inc.</td>
<td>519</td>
<td>Process control software, Yield management software, advanced packaging lithography</td>
</tr>
<tr>
<td>SemiDice, Inc.</td>
<td>707</td>
<td>Bare Die Distributor and Wafer Processing Services. Both active and passive lines include: Analog Device, Fairchild Semiconductor, Texas Instruments, Microsemi Corp, Cree Inc, International Rectifier, Vishay Intertechnology, ON Semiconductor, NXP, ISSI, Central Semi, IRC Advanced Fil, Johanson Dielectrics, Novacap Vishay Electrofilms, Value-added services include testing; electrical probing, LAT’s, Burn-in, Class H, K, Hi Rel division and extensive inventory with a broad product mix available.</td>
</tr>
<tr>
<td>Souriau PA&E</td>
<td>610</td>
<td>EMI filters</td>
</tr>
<tr>
<td>Stellar Industries Corp.</td>
<td>401</td>
<td>Thin Film Substrates, Thick Film Substrates, DBCu Substrates</td>
</tr>
<tr>
<td>Technic Inc</td>
<td>205</td>
<td>Mazerustar Planetary Mixers</td>
</tr>
<tr>
<td>Towa Corporation</td>
<td>312</td>
<td>Package Singulation</td>
</tr>
<tr>
<td>Trebor Instrument Corp.</td>
<td>404</td>
<td>Machine Shop Service, Delidding Service.</td>
</tr>
</tbody>
</table>
Symposium Committee

General Chair .. Matt Nowak Qualcomm, Inc.
Technical Chair Ivan Ndip Fraunhofer IZM
Technical Co-Chair, USA Mark Hoffmeyer IBM Corporation
Technical Co-Chair, Europe Andre Rouzaud CEA LETI
Technical Co-Chair, Asia Jin Yu Korea Advanced Institute of Science and Technology (KAIST)
Assistant Technical Co-Chair, USA Erica Folk Northrop Grumman
Assistant Technical Co-Chair, Europe Gilles Poupon CEA LETI
Assistant Technical Co-Chair, Asia Woong-Sun Lee SK Hynix
PDC Chair ... Tom Green TJ Green Associates, LLC
PDC Co-Chair .. Jim McEwen Oneida Research
Student Activities Chair Venky Sundaram Georgia Tech University
Student Activities Co-Chair Tom Weller University of South Florida
Student Activities Co-Chair Ege Engin San Diego State University
Student Activities Co-Chair Mike Newton Newton Cyberfacturing
GBC Chair .. Steve Annas Triton Microtech
GBC Co-Chair Lee Smith Plexus Corp.
Foundation Chair David Virissimo Coining, Inc./Ametek
Foundation High School Chair Mike Newton Newton Cyberfacturing
Foundation High School Co-Chair Janet Lumpp University of Kentucky
Marketing Chair Iris Labadie Kyocera America
Exhibits Chair Greg Caswell DfR Solutions

Additional Leadership and Staff:
IMAPS President Voya Markovich Endicott Interconnect Tech.
IMAPS President-Elect David Seeger IBM
IMAPS Past President Rajen Chanchani
IMAPS Treasurer Susan Trulli Raytheon Integrated Defense Systems
IMAPS VP Technology Steve Annas Triton Microtech
IMAPS Executive Director Michael O’Donoghue IMAPS
IMAPS Director, Program Development & Technology Brian Schieman IMAPS
IMAPS Advertising/Magazine Mgr Ann Bell IMAPS
IMAPS Membership & Events Coordinator Brianne Lamm IMAPS
Technical Program At-a-Glance

Tuesday, October 1, 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
</table>
| 8:00 AM—11:15 AM | INTERPOSERS & 2.5/3D PACKAGING Salon 3 | TSV Materials & Processes
- Chairs: Gabriel Fares, CEA; Sesh Ramaswami, Applied Materials |
| | MODELING, DESIGN, TEST & REL Salon 5 | Design & Analysis for 2.5D & 3D IC, Interposers, Packaging |
| | MATERIALS & PROCESSES Salon 1 | Advanced Materials & Novel Assembly Processes
- Chairs: Erica Folk, Northrop Grumman; Yoon-Chul Sohn, Samsung Advanced Institute of Technology |
| | ADVANCED PACKAGING & ASSEMBLY Salon 6 | Pb-Free Solder & ROHS
- Chairs: John Bolger, Department of Defense; John Pan, Cal Poly State University |
| | SPECIAL SESSIONS ON PACKAGING & SYSTEM-INTEGRATION Salon 4 | European Perspective on Packaging Trends
- Chairs: Andre Rouzaud, CEA LETI; Martin Schneider-Ramelow, Fraunhofer IZM |
| 2:00 PM—6:35 PM | Advanced Platform Integration
- Chairs: Umri Ray, Qualcomm; Kyu-oh Lee, Intel | Modeling and Design for SI and Reliability
- Chairs: Chris Pan, Qualcomm; Judy Priest, Cisco |
| | Polymers, Underfill, Encapsulants and Adhesives
- Chairs: Jeff Gotro, InnoCentrix; Lyndon Larson, Dow Corning | Wirebonding & Stud Bumping
- Chairs: Dan Evans, Palomar Technologies; Lee Levine, Process Solutions Consulting |
| | Emerging Technologies
- Chairs: Susan Bagen, Endicott Interconnect; Igor Prikhodko, Analog Devices | Asian Perspective on Electronic Packaging and System Integration
- Chairs: Tae-Kyu Lee, Cisco; Woongsun Lee, SK Hynix |

Wednesday, October 2, 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
</table>
| 8:00 AM—11:15 AM | Packaging Transitions: 2.5D and 3D Interconnect Technologies from Wire Bond to RDL to TSV
- Chairs: Greg Caswell, DIR Solutions; Cristina Chu, TEL NEXX | Thermal and Thermomechanical Modeling
- Chairs: David Saums, DS&A LLC; Mary Cristina Ruales Ortega, University System Ana G. Mendez |
| | Substrate Materials I
- Chairs: Michael Folk, Northrop Grumman Corp.; Jeff Hartman, Northrop Grumman Corp. | Flip Chip Bumping
- Chairs: Andy Strandford, Pac Tech USA; Nick Renaud-Bezot, AT&S |
| | New Concepts, Interconnects & Processes for High Performance Packaging
- Chairs: Benson Chan, Endicott Interconnect; Ron Lasky, Indium Corporation | Power Packaging I
- Chairs: Mark Hoffmeyer, IBM Corporation; Doug Hopkins, North Carolina State University |
| 2:00 PM—5:30 PM | Glass Interposers
- Chairs: Steve Annas, Triton Micro Tech; Aric Shorey, Corning Inc. | Testing Methods and Process for Improved Reliability
- Chairs: Mike Ferrara, RF Micro Devices; Akhlaq Rahman, Thin Film Corp. |
| | Substrate Materials II (Ceramic & LTCC)
- Chairs: Dan Krueger, Honeywell FMM&T; Ken Peterson, Sandia National Labs. | MEMS & Sensor Packaging
- Chairs: Matt Apanius, SMART Commercialization Center for Microsystems; Ron Jensen, Honeywell |
| | Think Thin: Thin IC Packaging For Mobile Devices
- Chairs: Rich Rice, ASE; Jason Cho, ASE; Milind Shah, Qualcomm | Power Packaging II
- Chairs: Julie Adams, UBOTIC Company Ltd.; Mark Hoffmeyer, IBM Corporation |

Thursday, October 3, 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
</table>
| 1:00 PM—5:00 PM | Technologies and Methods for 2.5/3D Packaging and Integration
- Chairs: Anwar Mohammed, John Hunt, ASE US | RF and Microwave Packaging
- Chairs: Xiaoguang “Leo” Liu, University of California; Davis; Fred Barlow, University of Idaho |
| | Bonding Materials and Processes
- Chairs: Maria Durham, Indium Corporation; Klaus-Dieter Lang, Fraunhofer IZM | LED and Optoelectronics Packaging
- Chairs: Toiga Tekin, Fraunhofer IZM; Luyi Nguyen, Texas Instruments |
| | Printed Electronics & Additive Manufacturing
- Chairs: Mike Newton, Newton Cyberfacturing; Yiilang Wu, Xerox Research Centre of Canada | Electronic Packaging for Harsh Environment Applications
- Chairs: Aicha Elshabini, University of Idaho; Tom Buschor, Harris Corporate |

Keynotes and Panel Discussion

Tuesday • 12:00 PM — 12:45 PM — Junior Ballroom F

KEYNOTE: Next Generation of Electronic Systems - Challenges and Solutions for System Integration Technologies

Prof. Dr. -Ing. Dr. sc. techn. Klaus-Dieter Lang - Klaus-Dieter Lang, Professor, School of Electrical Engineering and Computer Sciences at the Technical University Berlin, Germany

Wednesday • 11:20 AM — 12:05 PM — Junior Ballroom F

KEYNOTE: Progress in Developing an Open Supply Chain for 2.5D/3D Market Enablement

David McCann, Vice President of Packaging, GLOBALFOUNDRIES, Malta, New York

Wednesday • 12:30 PM — 2:00 PM — Junior Ballroom G

GLOBAL BUSINESS COUNCIL (GBC) Keynote Luncheon & Market Forecasting Analyst Session

Claudius Feger, IBM Research – Brazil, feger@us.ibm.com

Thursday • 8:00 AM — 12:00 PM — Junior Ballroom F

An entire morning of the conference dedicated to 2.5D & 3D IC, Interposers, Packaging
Technical Program

Tuesday, October 1, 2013 — Salon Rooms 1-6

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Chairs</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM – 11:15 AM</td>
<td>TSV Materials & Processes</td>
<td>Chairs: Gabriel Pares, CEA; Sesh Ramaswami, Applied Materials</td>
<td>TSV is one of the key technologies for 3D. Significant improvements have already been achieved on the materials and processes involved for its fabrication. However there still a lot to do to make it reliable and ready for high volume production.</td>
</tr>
<tr>
<td>8:30 AM – 8:45 AM</td>
<td>Design & Analysis for Reliability</td>
<td>Chairs: Steven Hunter, ON Semiconductor; Gopal Jha, Avago Technologies</td>
<td>High reliability is increasingly expected in microelectronic products. This session examines a variety of methods for improving device, assembly and packaging reliability by design.</td>
</tr>
<tr>
<td>8:45 AM – 9:00 AM</td>
<td>Advanced Materials & Novel Assembly Processes</td>
<td>Chairs: Erica Folk, Northrop Grumman; Yoon-Ohl Sohn, Samsung Advanced Institute of Technology</td>
<td>Novel packaging materials will be introduced in conjunction with packaging assembly technologies. Various organic, inorganic and metallic materials are selected for the applications of 3D integration, packaging assembly, and die attachment.</td>
</tr>
<tr>
<td>9:00 AM – 11:15 AM</td>
<td>Pb-Free Solder & ROHS</td>
<td>Chairs: John Bolger, Department of Defense; John Pan, Cal Poly State University</td>
<td>The continuing challenges of implementing lead-free solder will be examined in this session, as industry continues to evaluate options to improve the reliability of lead-free solder joints.</td>
</tr>
<tr>
<td>11:15 AM – 12:00 PM</td>
<td>Medical Device Packaging</td>
<td>Chairs: Sean Ferrian, Ferrian Sales & Associates; Ying Yu, IBM Systems & Technology Group</td>
<td>This session will highlight materials, processes, and characterization methods for packaging biomedical devices and microfluidics to enable novel diagnostics and treatments.</td>
</tr>
<tr>
<td>12:00 PM – 2:00 PM</td>
<td>European Perspective on Packaging Trends</td>
<td>Chairs: Andre Rouzaud, CEA LETI; Martin Schneider-Ramelow, Fraunhofer IZM</td>
<td>From key enabling technologies to advanced SiP and hybrid system integration: This session will give an insight on different novel technologies and materials required to fulfill the promise for the next generation of future systems.</td>
</tr>
<tr>
<td>2:00 PM – 2:45 PM</td>
<td>FEATURED SPEAKER: Alternative technology concepts for low-cost and high-speed 2D and 3D interconnect manufacturing</td>
<td>Fred Rozeboom, Eindhoven University of Technology (M. Smets, B. Kniknie, M. Hoppenbrouwers, TNO; G. Dingemans, W. Keuning, W.M.M. Kessels, Eindhoven University of Technology; R. Pohl, A.J. Huis in’t Veld, University of Twente)</td>
<td>Using Physics of Failure to Predict System Level Reliability for Avionic Electronics Greg Caswell, DfR Solutions Development of Laser and Photo-Definable Toughened Benzocyclobutene Dielectric Materials for 3D-TSV Integration Zidong Wang, Dow Electronic Materials (Greg Prokopowicz, Kevin Wang, Joe Lachowski, Zhiling Bai, Ray Thibault, Eric Huener, Scott Kisting, Chris Tucker, Matt Bishop, Lynne Mills, Dave Louks, Michael Gallagher) Effects of Minor Alloying Additive on the Shear Strength of Sn-58Bi Solder Joint Omid Mokhtari, Joining and Welding Research Institute, Osaka University (Hiroshi Nishikawa)</td>
</tr>
<tr>
<td>2:45 PM – 3:00 PM</td>
<td>FEATURED SPEAKER: How are CCD, CMOS AND A-SI Reshaping the Medical Imaging Industry?</td>
<td>Christophe Fitamant, Yole Development</td>
<td>How are CCD, CMOS AND A-SI Reshaping the Medical Imaging Industry?</td>
</tr>
<tr>
<td>3:00 PM – 3:15 PM</td>
<td>FEATURED SPEAKER: Assembly and Packaging Enabling System Integration</td>
<td>Klaus Pressel, Infineon Technologies</td>
<td>Assembly and Packaging Enabling System Integration</td>
</tr>
</tbody>
</table>
Tuesday, October 1, 2013 — Salon Rooms 1-6

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:50 AM - 9:15 AM</td>
<td>INTERPOSERS & 2.5/3D PACKAGING Salon 3</td>
</tr>
<tr>
<td>9:15 AM - 9:40 AM</td>
<td>MODELING, DESIGN, TEST & REL Salon 5</td>
</tr>
<tr>
<td>9:40 AM - 10:00 AM</td>
<td>MATERIALS & PROCESSES Salon 1</td>
</tr>
<tr>
<td>10:00 AM - 10:25 AM</td>
<td>ADVANCED PACKAGING & ASSEMBLY Salon 6</td>
</tr>
<tr>
<td>10:25 AM - 10:50 AM</td>
<td>ADVANCED & EMERGING TECHNOLOGIES Salon 2</td>
</tr>
<tr>
<td>10:50 AM - 11:15 AM</td>
<td>SPECIAL SESSIONS ON PACKAGING & SYSTEM-INTEGRATION Salon 4</td>
</tr>
</tbody>
</table>

8:50 AM - 9:15 AM
- **Monitoring of Wet Etch for Wafer Thinning and Via Reveal process**
 - Eugene Shalut, ECI Technology
 - Chuanan Bai, Guangliang, Peter Bratin
- **Ag-Wire and Ag Alloy Wire Reliability and Molding Compound**
 - Aya Mizushima, Hitachi Chemical (Yoshinori Endo, Hidetoshi Abe, Shinichiro Kato, Kazushiro Ikemura, Naoki Sadayori)
- **Influence of the organic vehicle and inorganic additives on the properties of thick film pastes for AlN**
 - Richard Schmidt, Fraunhofer IKS (Marco Wenzel, Kathrin Reinhardt, Markus Eberstein, Lars Rebenklau)
- **Effect of Fe Content on the Interfacial Reliability of SnAgCu/Fe-Ni Solder Joint**
 - Zhi-Quan Luan, Institute of Metal Research, Chinese Academy of Sciences (Hao Zhang, Li Zhang, Hongyan Guo, Chi-Ming Lai)
- **Evaluation of Epoxy Flux for Use in Hearing Aid SMD Assemblies**
 - Susie Kuzmarzick, Starkey Hearing Technologies (John Dzarnoski)
- **Ultrasonically Enabled Low Temperature Electroless Plating for Advanced Electronic Manufacture**
 - Dr Andrew J Cobley, Coventry University (Graves J E, Kassim A, Mkhlet B, Abbas B)

9:15 AM - 9:40 AM
- **2.5 / 3D Packaging Technology Solution for High Frequency Device**
 - Yasuhiro Morikawa, ULVAC Inc. (T. Murayama, A. Suzuki, T. Sakushi, Y. Nakamuta and K. Sou)
- **Moisture Reliability Improvement of a High Performance Depletion Mode 0.15 um Gate PHEMT Process**
 - J. K. Abrokwah, Avago Technologies (John Stanback, Molly Johnson, Chi L. Jiaa)
- **Better, Faster and Cheaper Precision Cleaning: Advanced CO2 Cleaning Technology**
 - David Jackson, CleanLogix LLC
- **Effect of ENETP Surface Finish on the Vibration Reliability of Solder Interconnects**
 - Sandeep Menon, CALCE, University of Maryland (Adam Pearl, Michael Osterman, Michael Pecht)
- **Anti-Counterfeit, Advanced Microelectronics Packaging Solutions for Miniaturized Medical Devices**
 - Rabindra Das, Endcett Interconnect Technologies, Inc. (Frank D. Egitto, How Lin)
- **Hybrid In-Mould Integration**
 - Teemu Alajoki, VTT (Matli Koponen, Antti Huttunen, Markus Tuomikoski, Mikko Heikkinen, Antti Keranen, Kimmo Keranen, Jukka-Tapani Makinen, Tuomo Jaakola, Janne Akko, Kari Ronka)

9:40 AM - 10:00 AM
- **Application of Low-K Liner for Stress and Capacitance Control in Cu-TSV**
 - Chuan Seng Tan, Nanyang Technological University (Lin Zhang, Hongyu Li, Woonik Yoo)
- **LORD SolderBraceTM for improved reliability and throughput in WLCSP**
 - George Sear, LORD Corporation
- **Copper Wirebond Compatibility with Organic and Inorganic Ions Present in Mold Compounds**
 - Varun Iseh Mathew, Freescale Semiconductor, Inc. (Shella Chopin, Leo Higgins, Yingrui Zhang)
- **Thermal Cycling Reliability of Alternative Low-Silver Tin-based Solders**
 - Eliza George, CALCE, University of Maryland (Michael Osterman, Michael Pecht, Richard Coyle, Richard Parker, Elizabeth Benedetto)
- **Non-hermetic Micropackage for Chronic Implantable MEMS Systems**
 - Wen H. Ko, Case Western Reserve University (Peng Wang, Sherm Lachhman, Di Sun, and C. Zorman)
- **Excimer Laser Machining of Fired LTCC for Selectively Metalized Open Micro-channel Structures**
 - Dilshani Rathnayake-Archchige, Loughborough University (Paul Conway, David Hutt)

10:00 AM - 10:25 AM
- **Electrografted insulator layer as copper diffusion barrier for TSV interposers**
 - Vincent Mevellec, Alchimer (F. Raynal, D. Sohr, T. Dequive, L. Religieux)
- **Moisture and Hydrogen Release in Optoelectronics Hermetic Packages**
 - Manwan Albarghoudi, Semtect (Nayla ElDahdah, Gordan Perosevic, Swati Jain)
- **A non-TSV 1000 + IO Package on Package Solution for wide IO applications**
 - Laura Mirkarimi, Inversas Corp (Rajesh Katkar, Ron Zhang, Roy Co, Zhijun Zhao)
- **Voiding and Reliability of Assembly of BGA with SAC and 57Bi42Sn1Ag Alloys**
 - Ning-Cheng Lee, Indium Alloys SAC and 57Bi42Sn1Ag of Assembly of BGA with Voiding and Reliability
 - Elizabeth Benedetto, LORD Corporation (Van Liu)
- **An Overview of Isotropic Conductive Adhesives Filled with Metal-coated Polymer Spheres**
 - Hoang-Vu Nguyen, IMST, Vestfold University College (Knut E. Aasmundtveit, IMST, Vestfold University College; Helge Kristiansen, Conpart AS; Susanne Helland, Tore Helland, Mosaic Solutions AS)

10:25 AM - 10:50 AM
- **Analysis of Strain/Stress in Electroless Copper Films**
 - Tobias Bernhard, Atotech Deutschland GmbH (Simon Bamberg, Frank Bruening, Ralf Bruening, Christoph Genzel, Laurence Gregoriades, Tanu Sharma)
- **Thermal Cycle Consideration in Applying Lead-Free TFBGA Simulation to a Design Yi-Chuan Tsai, National Sun Yat-Sen University**
 - A friction based approach for modeling wire bonding
 - Simon Althoff, University of Paderborn (Walter Sextro, Tobias Hemsel, Jan Neuhaus)

10:50 AM - 11:15 AM
- **COFFEE BREAK IN FOYER: 9:40 AM – 10:00 AM — sponsored by LORD**

IMAPS 2013 • 46th Annual Symposium on Microelectronics

43
Tuesday Keynote

October 1, 2013

Opening Ceremonies: Annual Business Meeting, Awards Ceremony, Keynote

11:00 AM – 5:00 PM Exhibit Hall Opens
11:25 AM – 11:40 AM Annual Business Meeting
11:40 AM – 12:00 PM IMAPS Society Awards Ceremony

12:00 PM – 12:45 PM
Junior Ballroom F

KEYNOTE:

Next Generation of Electronic Systems - Challenges and Solutions for System Integration Technologies

The use of micro-level integration technologies to manufacture high-end electronic systems has increased dramatically around the world, the potential for applications being almost unlimited. To enable a smart planet, driven partly by the internet of things, next generation of electronic systems are expected to be more energy efficient, highly miniaturized and multifunctional with embedded computing, communication and sensing functionalities. In order to achieve this goal, novel heterogeneous system integration technologies and design methodologies are needed.

In this talk, some of the key system integration technologies required for the development of next generation electronic systems will be discussed. The focus will be on 3D wafer level packaging, panel level packaging and on interposer technologies. An overview of innovative electrical, thermal and thermo-mechanical design approaches will also be given.

Prof. Dr. -Ing. Dr. sc. techn. Klaus-Dieter Lang is a Professor with the School of Electrical Engineering and Computer Sciences at the Technical University Berlin, Germany, where he leads research activities in the area of Nano Interconnect Technologies. He is also the Director of the Fraunhofer Institute for Reliability and Microintegration, IZM, Berlin.

Professor Lang began his career as a Research Engineer at Humboldt University Berlin, where he spent 10 years (1981 to 1991) working in the areas of Microelectronic Assembly, Packaging and Quality Assurance. In 1991, he moved to SLV Hannover to build up a Department for Microelectronic and Optic Components Manufacturing. He joined Fraunhofer IZM 20 years ago and was initially responsible for R&D activities in the area of Chip Interconnection Technologies. From 2001 to 2005 he coordinated Fraunhofer IZM’s Lab on Microsystem Engineering in Berlin-Adlershof, and from 2003 to 2005 he was the Head of the Department of Photonic and Power System Assembly. In 2006, he was appointed as the Deputy Director of Fraunhofer IZM, a position he held till 2010. Since 2011 he has been the Director of the Institute.

Professor Lang Chairs the German Chapter of IEEE-CPMT and he is a member of numerous scientific boards and conference committees. He is the author and co-author of 3 books and more than 130 publications in the field of Wire Bonding Technologies, Microelectronic Packaging, Microsystems Technologies and Chip-on-Board Technologies. He studied Electrical Engineering at the Humboldt University Berlin, and holds a Master’s degree and two Doctorate degrees.

12:45 PM – 2:00 PM Lunch Break (Food not provided by IMAPS Today)
Tuesday, October 1
1:30pm – 4:30pm in the Exhibit Hall
Student/University Poster Session

Chairs: Venky Sundaram, Georgia Tech University; Tom Weller, University of South Florida; Ege Engin, San Diego State University; and Mike Newton, Newton Cyberfacturing

One-on-One Interactive Forum. This is your chance for detailed interaction with student authors whose work is too good to miss.

Integrated Ψ-Type Photonic Polarization Diversity Receivers for Wireless Radio-over-Fiber Communication Links
Vitaly Rymanov, Universität Duisburg-Essen (Sebastian Dolme, Melanie Wachholz, Merih Palandoken, Tolga Tekin, and Andreas Stahr)

Self-packaged High-Temperature Sensors for Harsh-Environment Applications
Haitao Cheng, University of Central Florida (Xinhua Ren, Siarnak Ebadi, Yaohan Chen, Linan An, Xun Gong)

The Path Forward: Silicon Optical Modulator for CMOS ICs
Kaikai Xu, University of California, Irvine

Non-contact microwave characterization of printed resistors
Maria F. Cordoba-Erazo, University of South Florida (Thomas M. Weller)

Through Silicon Via (TSV) Arrays for High Frequency Signal Transmission in 3D Integrated Circuits
Min Xu, CNSE, University at Albany (Robert Geer, University at Albany; Pavel Kabos, Thomas Wallis, NIST)

Silver Oxalate: Towards a New Solder Material for Highly Dissipative Electronic Assemblies
K. Kiryukhina, CNES (H. Le Trong, P. Tailhades, J. Lacaze, F. Courtade, S. Dareys, O. Vendier, L. Raynaud)

Study of Wirebonding on Thin Al Pads with Various Size Probe Marks
Shashi Sharma, Brigham Young University (Stevan Hunter, ON Semiconductor; Andrew Forhan, University of Colorado; Prakash Subedi, Dustin Whittaker, Brigham Young University)

Design for Solder Joint Fatigue Life of BGA Package Subject to Mechanical Environment
Jia-Shen Lan, National Sun Yat-sen University (Mei-Ling Wu)

Excimer Laser Machining of Fired LTCC for Selectively Metalized Open Micro-channel Structures
Dilshani Rathnayake-Arachchige, Loughborough University (Paul Conway, David Hutt)

Compact Photonic Package for High-Power E-band (60-90 GHz) Photoreceiver Modules
Vitaly Rymanov, Universität Duisburg-Essen (Merih Palandoken, Sebastian Duelme, Tolga Tekin, Andreas Stohr)

Modeling and Reliability Analysis of TSVs for High Frequency Applications
Kaushal Kannan, City College of New York (Sukeshwar Kannan, Bruce Kim)

Droplet-on-Demand Inkjet-filled TSVs as a Pathway to Cost-efficient Chip Stacking
Jacob Sadie, University of California, Berkeley (Niels Quack, Ming Wu, Vivek Subramanian)

Thermal Cycle Consideration in Applying Lead-Free TFBGA Simulation to a Design
Yi-Chuan Tsai, National Sun Yat-Sen University

Effect of ENEPiG Surface Finish on the Vibration Reliability of Solder Interconnects
Sandep Menon, CALCE, University of Maryland (Adam Pearl, Michael Osterman, Michael Pecht)

Thermal Cycling Reliability of Alternative Low-Silver Tin-based Solders
Elviz George, CALCE, University of Maryland (Michael Osterman, Michael Pecht, Richard Coyle, Richard Parker, Elizabeth Benedetto)

Conceptual Development Using 3D Printing Technologies for 8kV SIC Power Module Package
Haotao Ke, North Carolina State University (Douglas Hopkins)

A Switched-Line Microwave Phase Shifter Fabricated with Additive Manufacturing
Jonathan O’Brien, University of South Florida (Mike Newton, Thomas Weller, Daniel Silva, Eduardo Rojas)

Chip Design of an 1 V RF Receiver Front-End for 5.8-GHz DSRC Applications
Wen Cheng Lai, National Taiwan University of Science and Technology (Jhin-Fang Huang, Yong-Jhen Jiang)

Fatigue Life Analysis of Sn96.5Ag3.0Cu0.5 Solder Thermal Interface Material of a Chip-Heat Sink Assembly in Microelectronic Applications
Mathias Expu, University of Greenwich (Raj Bhatti, Michael Okereke, Kenny Otiaba)

Thermo-Mechanical Stress of Underfilled 3D IC Packaging
Ming-Han Wang, National Sun Yat-Sen University (Mei-Ling Wu)

Stitch Bond Process of Pd-Coated Cu Wire: Experimental and Numerical Studies of Process Parameters and Materials
Ali Rezvani, University of Waterloo (Michael Mayer, Ivy Qin, Jon Brunner)

Reliabilities and Strength of Al 718 For Thermoelectric Generator Assembly
Victor Wolemiwa, University of Idaho (Dominic Nwoke)

Modeling of Failure in Aluminum Alloy Brazes for a High Temperature Thermoelectric Generator
Shams Arifeen, University of Idaho (Gabriel Potirniche, Aicha Elshabini, Fred Barlow)
<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 PM</td>
<td>Salon 1</td>
<td>Advanced Platform Integration Chairs: Urmi Ray, Qualcomm; Kyo-oh Lee, Intel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This session addresses diverse platform integration schemes using 2.5 and 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>technologies. The papers address effective methodologies for design to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electrical characterization with product applications. Technology engineers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and product managers will benefit from the breadth of technologies covered in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the papers.</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>Salon 2</td>
<td>Modeling and Design for SI and Reliability Chairs: Chris Pan, Qualcomm;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Judy Priest, Cisco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced modeling and simulation techniques are used to analyze and optimize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electrical performance and reliability in silicon, substrates, packages, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L1/L2 assembly. Some measurement correlation may be discussed, along with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>printed circuit board effects.</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>Salon 3</td>
<td>Enabling a Manufacturable 3D Technologies and Ecosystem Using 28mm FPGA with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stack Silicon Interconnect Technology Woon-Seong, Kwon, Xilinx (Myongseob Kim,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jonathan Chang, Suresh Ramalingam, Liam Madden, Xilinx; Genie Tsai, Stephen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tseng, J.Y. Lai, Terren Lu, Steve Chiu, SPL)</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>Salon 4</td>
<td>DIMM-in-a-Package (DIAP) Signal Integrity for High-Performance On-Board Memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applications Zhuowen Sun, Inversnas (Kevin Chen, Richard Crisp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Package Technology Selection of 28nm High Power FPGA with Pb-Free Bumps: Flip</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chip Molded BGA Versus Traditional Bare Die Package Corey Reichman, Amkor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technology (Intel Corp - Michael Lykas, Aaron Elberg, Romina Mimi Ocampo,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atfal Hasan, Diederik & Amkor - Miguel Jimarez, Fred Hamilton, Joon Dong Kim)</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>Salon 5</td>
<td>High Speed Signal Transmission using Through-Si Vias and Coplanar Waveguides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in a 3D IC Test Structure Min Xu, CNSE, University at Albany (Robert Geer,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University at Albany; Pavel Kabos, Thomas Wallis, NIST)</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>Salon 6</td>
<td>Advanced Packaging & Assembly Chairs: Dan Evans, Palomar Technologies; Lee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Levine, Process Solutions Consulting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In this session, we focus on some of the advances from the polymeric materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>side; introducing novel adhesives, flux, and underfill technologies for use in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a wide range of applications including molding, SMT, 2.5D and 3D assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>processes.</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>Salon 7</td>
<td>Emerging Technologies Chairs: Susan Bagen, Endicott Interconnect; Igor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PrzehoÅ“ko, Analog Devices Consulting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This session covers non-destructive testing challenges and methods of wires and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bond pads, Pb-Coated Copper wire process window optimization, Copper wedge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bonding, Al and Silver based wires as alternatives to copper, plus hybrid wire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bond capabilities.</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>Salon 8</td>
<td>Asian Perspective on Electronic Packaging and System Integration Chairs: Tae-Kyu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lee, Cisco; WoongSun Lee, SK Hynix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This special session covers the Asian perspective on electronic packaging, 3D,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>new material and process, and MCP variety of packages are discussed in this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>session and distinguished speakers will present leading edge technologies of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electronic packaging in Asia.</td>
</tr>
</tbody>
</table>

DESSERT “HAPPY HOUR” & COFFEE BREAK IN EXHIBIT HALL: 3:15 PM - 4:30 PM
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:30 PM – 4:55 PM</td>
<td>Electrical Characterization of TSVs with Varying Process Knobs and Temporary Bond/Adhesive System Robustness Studies for 2.5D/3D Manufacturing</td>
<td>Niranjan Kumar, Applied Materials (Sesh Ramaswami, Arvind Sundarrajan, CH Toh, Aksel Kitowski, Anthony C-T Chan, David Erickson, Jay Vijayen, Minrui Yu, Uday Mahajan)</td>
</tr>
<tr>
<td>4:55 PM – 5:20 PM</td>
<td>Polymer Based Interposer Providing ESD and Thermal Robustness</td>
<td>Karen Shrier, Electronic Polymers Newco Inc. (Wei Lin, Danny Brady, Ken Stratton, Miguel Jimenez)</td>
</tr>
<tr>
<td>5:20 PM – 5:45 PM</td>
<td>Adhesion and Cure Mechanism Studies for Advanced Lidded Flipchip Applications</td>
<td>Larson, Lyndon, Dow Corning Corporation (Kristen Steinbrecher, James Tonge)</td>
</tr>
<tr>
<td>5:45 PM – 6:10 PM</td>
<td>Study of Wirebonding on Thin Al Pads with Various Size Probe Marks</td>
<td>Shashi Sharma, Brigham Young University (Stevan Hunter, ON Semiconductor; Andrew Forhan, University of Colorado; Prakash Subedi, Dustin Whitaker, Brigham Young University)</td>
</tr>
<tr>
<td>6:10 PM – 6:35 PM</td>
<td>High Speed Aluminum Wirebonding for Molded Packages</td>
<td>Lui Nguyen, Texas Instruments Inc. (Ken Pham, Anindya Poddar, Texas Instruments; Yoshinori Hagihara, Naoki Sekine, Shinkawa)</td>
</tr>
</tbody>
</table>
Wednesday, October 2, 2013 — Salon Rooms 1-6

Packaging Transitions: 2.5D and 3D Interconnect Technologies from Wire Bond to RDL to TSV

Chairs: Greg Caswell, DIR Solutions; Cristina Chu, TEL NEX

The transition from packaging today as we know it to true 3D interconnects involves many hybrid solutions as the industry inches towards TSVs. This session will focus on creative implementations of packaging to efficiently push the boundaries of RDLs, bumping and interposers, among other applications, to cost effectively address the challenges delivering the greatest electronic efficiency at the lowest prices.

Cost Comparison of 2.5D/3D Packaging to Other Packaging Technologies

Chet Palesko, SavanSys Solutions LLC (E. Jan Vardaman, TechSearch International, Inc.; Alan Palesko, SavanSys Solutions LLC)

Interactions between Variable Frequency Microwave Underfill Processing and High Performance Packaging Materials

Mamadou Diobet Diop, Université de Sherbrooke (Dominique Drouin, Université de Sherbrooke; Marie-Claude Paquet, IBM Canada)

Effects of Copper Pattern Density and Orientation on the Modulus of BGA Substrates

Burton Carpenter, Freescale Semiconductor, Inc. (Betty Yeung, Freescale Semiconductor, Inc.; Yuan Yuan)

Development of an Ultra Thin Die-to-Wafer Flip Chip Stacking Process for 2.5D Integration

Gabriel Pares, CEA-Leti (A. Attard, F. Dosseul, G. Klug, G. Simon)

Si Vapor Chamber Integrated with Through Silicon Via for 3D Packaging

Jun Taniguchi, Fujitsu Laboratories LTD. (Takeshi Shioza, Yoshihiro Mizuno)

Power Packaging I

Chairs: Mark Hoffmeyer, IBM Corporation; Doug Hopkins, North Carolina State University

This session focuses predominantly on power packaging systems, electrical design, modeling, and the deployment of advanced power packaging applications.

Interposers & 2.5/3D Packaging

Salon 3

8:00 AM—8:25 AM

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal and Thermomechanical Modeling</td>
<td>David Saums, DS&A LLC; Mary Cristina Ruales Ortega, University System Ana G. Mendez. This session focuses on thermal and thermomechanical modeling. A variety of topics will highlight recent advances within these areas.</td>
</tr>
<tr>
<td>Substrate Materials I</td>
<td>Michael Folk, Northrop Grumman Corp.; Jeff Hartman, Northrop Grumman Corp. Improved substrates and associated processes are required to improve performance, reliability and lower cost of ownership. In this session the properties and processes for advancing substrates will be presented.</td>
</tr>
<tr>
<td>Flip Chip Bumping</td>
<td>Andy Strandford, Pac Tech USA; Nick Renaud-Bezot, AT&S. Solder bumping is a reliable interconnect technology that is directly compatible with many of the latest semiconductor technologies, including: 2D, 3D, organic packages, and ultra thin packages. Continued reliability testing, process development, and materials development are essential to ensure that solder bumping is a long-term interconnect solution as these new semiconductor technologies evolve.</td>
</tr>
<tr>
<td>New Concepts, Interconnects & Processes for High Performance Packaging</td>
<td>Benson Chan, Endicott Interconnect; Ron Lasky, Indium Corporation. In this session, novel concepts, interconnects and processes for next high performance packaging will be presented.</td>
</tr>
</tbody>
</table>

Modeling, Design, Test & Rel

Salon 5

8:25 AM—8:50 AM

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>

Materials & Processes

Salon 6

8:25 AM—8:50 AM

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Comparison of 2.5D/3D Packaging to Other Packaging Technologies</td>
<td>Chet Palesko, SavanSys Solutions LLC (E. Jan Vardaman, TechSearch International, Inc.; Alan Palesko, SavanSys Solutions LLC)</td>
</tr>
</tbody>
</table>
Wednesday, October 2, 2013 — Salon Rooms 1-6

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:50 AM – 9:15 AM</td>
<td>INTERPOSERS & 2.5/3D PACKAGING Salon 3</td>
</tr>
<tr>
<td>10:00 AM – 10:25 AM</td>
<td>MODELING, DESIGN, TEST & REL Salon 5</td>
</tr>
<tr>
<td>10:25 AM – 10:50 AM</td>
<td>MATERIALS & PROCESSES Salon 1</td>
</tr>
<tr>
<td>10:50 AM – 11:15 AM</td>
<td>ADVANCED PACKAGING & ASSEMBLY Salon 6</td>
</tr>
<tr>
<td>11:15 AM – 11:30 AM</td>
<td>ADVANCED & EMERGING TECHNOLOGIES Salon 2</td>
</tr>
<tr>
<td>11:30 AM – 11:45 AM</td>
<td>SPECIAL SESSIONS ON PACKAGING & SYSTEM-INTEGRATION Salon 4</td>
</tr>
</tbody>
</table>

INTERPOSERS & 2.5/3D PACKAGING Salon 3

- A Wide I/O Memory-on-Logic Product Prototype Enabled by Through Silicon Stacking Technology

MODELING, DESIGN, TEST & REL Salon 5

- Fatigue Life Analysis of Sn96.5Ag3.0Cu0.5 Solder Thermal Interface Material of a Chip-Heat Sink Assembly in Microelectronic Applications
 - Mathias Ekp, University of Greenwich (Raj Bhati, Michael Okereke, Kenny Otiaba)

- Method to Measure the Effects on Surface Roughness on the High Frequency Transmission Line
 - Toshihiko Iwai, Fujitsu Laboratories Ltd. (Daiku Mizutani, Motoaki Iain)

MATERIALS & PROCESSES Salon 1

- 3D Integration of System-in-Package (SiP) Using Organic Interposers: Toward SiP-Interposer-SiP for High-End Electronics
 - Rabinada Das, Endiocct Interconnect Technologies, Inc. (Frank Egitto, Steven Rosser, Erich Kopp, Barry Bonitz)

ADVANCED PACKAGING & ASSEMBLY Salon 6

- Multi Beam Low-K Grooving Evaluation of Various Removal Principals-ALSI
 - Jeroen van Borkulo, Advanced Laser Separation International (ALSI) N.V. (Henric de Jonge)

ADVANCED & EMERGING TECHNOLOGIES Salon 2

- Package design and development of a low cost high temperature (250°C), high current (50 A), low inductance discrete power package for advanced Silicon Carbide (SiC) and Gallium Nitride (GaN) devices
 - Brice McPherson, APEI, Inc. (Brandon Passmore, Peter Killeen, Daniel Martin, Ty McNutt)

SPECIAL SESSIONS ON PACKAGING & SYSTEM-INTEGRATION Salon 4

- COFFEE BREAK IN EXHIBIT HALL: 9:15 AM – 10:00 AM — sponsored by Lord AskUFlow™
 - (Exhibit Hall Open: 9:00 AM – 7:30 PM)

- 3D RCP Package Stacking: Side Connect, An Emerging Technology for System Integration and Volumetric Efficiency
 - Michael Vincent, Freescale Semiconductor, Inc. (Doug Mitchell, Jason Wright, Alan Magnus, Wengfoong Yap, Jinhbang Iang, Scott Hayes)

- Thermally and Electrically Enhanced Wirebond BGA
 - Burton Carpenter, Freescale Semiconductor, Inc. (Boon Yew Low, Leo Higgins Ill, Siraam Neelakantan, Robert Wenzel, Daniel Boyne)

- Analysis of the Thick Film Deposited on Alumina Substrate and Effect of Different Parameters on the Response of Propanol Using Taguchi Method
 - Ibrahim Gaidan, Sirite University

- Organic Chip Scale Package (CSP) Development for Flip Chip Applications
 - Tomoyuki Yamada, Kyocera SLC Technologies (Masahiro Fukui, Kenji Terada, Masaaki Harazono, Teruya Fujisaki, Kyocera SLC Technologies; Tomoyuki Yamada, Kyocera; Jean Audet, Sushumna Irivan, Yi Pan, Scott Moore, Brian Sundlot, Charlie Reynolds, IBM Corporation)

- Stencil Printing Process Guidelines for 0.3mm Pitch Chip Scale Packages
 - Mark Whitmore, DEK Printing Machines Ltd (Jeff Schake, Clive Ashmore)

- Advanced Thermal Simulation Model for Power MOSFETs
 - Jens Epyri, Infineon Technologies N.A. Corp

INTERPOSERS & 2.5/3D PACKAGING Salon 3

- 3D Integrated Packaging Approach for High Performance Processor-Memory Module
 - Stephen Poizner, Mayo Clinic (W. L. Wilkins, J. L. Fasig, M. J. DeGraff, B. K. Gilbert, E. S. Daniel)

- Accurate Finite Element Analysis of Embedded Wafer Level Packaging by Thermomechanical Characterization of Materials and ICs Piezoresistive Stress Sensors

- RF Capacitors Material for Use in PCBs
 - Jin-Hyun Hwang, Oak-Mitsui Technologies, LLC (John Andresakis, Ethan Feinberg, Bob Carter, Yui Kagayama, Fujio Kuwako)

- Improving WLCSF Reliability Through Solder Joint Geometry Optimization
 - Boyd Rogers, Deca Technologies (Chris Scanlan)

- Z-Axis Interconnection: A Versatile Technology Solution for High Performance Electronics
 - Rabinada Das, Endiocct Interconnect Technologies, Inc. (J. M. Lautler, F.B. Egitto)

ADVANCED PACKAGING & ASSEMBLY Salon 6

- A Highly Integrated GaAs-based Module for DC-DC Regulators
 - Kelly Jordan, Sarda Technologies (Rogdan Duduman, Bill Batchelor)

SPECIAL SESSIONS ON PACKAGING & SYSTEM-INTEGRATION Salon 4

- Next-Generation Lead-Free Solder Plating Products for High Speed Bumping, Capping and Micro-Capping Applications
 - Jonathan Prange, The Dow Chemical Company (Julia Woertink, Y Qin, Pedro Lopez Montesinos, Inho Lee, Yi-Hak Lee, Masaaki Imanari, Jianwei Dong, Jeff Calvert)

- Evaluation of Thermal Performance for a New Ventilated Heat Sink Module
 - Shiang-Jun Lin, National Kaohsiung University of Applied Sciences (Yen-Wei Chen)

- Characterization of CVD Diamond for Thermal Management Applications
 - Brooke Locklin, Element Six (Richard Balmer, Thomas Obeloer)

- Isothermal Fatigue Tests of Sn63-Pb37, Sn62-Pb36-Ag2 and Sn42-Bi58 Solder Joints
 - Eliane M Gariglio, UNISAL College (Itamar Ferreira)
Wednesday Keynote

October 2, 2013

9:00 AM – 7:30 PM Exhibit Hall Opens
12:15 AM – 1:30 PM Lunch in Exhibit Hall (Lunch Provided by IMAPS & Sponsors)

11:20 AM – 12:05 PM

Junior Ballroom F

KEYNOTE:
Progress in Developing an Open Supply Chain for 2.5D/3D Market Enablement

An open supply chain requires close collaboration, early investment, and focus on the ultimate goal of yield and cost to enable markets. An open supply chain is more complex to develop but will provide the end-customer with the most flexibility and transparency and enables use of expertise in each stage of the supply chain. An open supply chain also requires high levels of sharing, not typical in our industry. Significant progress has been made in test chip development, TSVs, interposers, test strategy, yield, and cost. Data and remaining challenges will be presented in each of these areas. The relationship between memory architecture and cost will also be discussed.

David McCann is Vice President of Packaging at GLOBALFOUNDRIES in Malta, New York. In this role, David is responsible for Packaging R+D, interconnect development, and back-end strategy and implementation. David started at GLOBALFOUNDRIES in 2011.

Prior to GLOBALFOUNDRIES, David worked at Amkor Technology for 11 years, in product group and development roles. He also led cross-functional teams including networking product strategy and mobile product development.

David has supported the Electronic Component and Technology Conference for more than 10 years. He was General Chair in 2012.

David McCann received his Masters in Engineering Management from the Santa Clara University in 1985 and his BS in Ceramic Engineering from the University of Illinois in 1981.
GLOBAL BUSINESS COUNCIL (GBC)
Keynote Luncheon & Market Forecasting Analyst Session
Wednesday, October 2, 2013 — in the Junior Ballroom

Junior Ballroom G
12:30 PM: Welcome Message: GBC Objectives and Agenda Review
Lee Smith, Plexus Corp.

12:40 - 1:00 PM: GBC Luncheon & Keynote Speaker: “The Microelectronics Industry in Brazil”
Claudius Feger, IBM Research - Brazil, feger@us.ibm.com

As Brazil’s middle class has increased by 35 million people, electronics imports have skyrocketed - resulting in a narrowing of Brazil’s trade balance, which in January 2013 turned negative. To address this trend, the Brazilian government made the development of a local microelectronics industry an economic priority. Previously, the government focused on developing IC design skills and the creation of design houses, of which 22 were established to-date. However, the success of these has been limited, mostly because of difficulties in attracting industrial projects and thus over half of the existing design houses are not for profit.

With the announcement in late in 2012 of the creation of SIX Semicondutores, an IDM which once completed, will be the most advanced, commercial chip manufacturer in Latin America, the Brazilian microelectronics industry started a new chapter. SIX Semi will be using IBM 130 and 90 nm technology to provide advanced mixed signal / hybrid semiconductor devices and products for the medical devices, smart card, sensor, energy management and similar markets. In doing so, Brazil hopes to start making a dent in the import of about US$4 - 5 billion annual imports of ICs.

Another focus area is electronic packaging. But even after the announcement in 2012 of HT Micron, (a joint venture between the Brazilian Altus and the Korean Hana Micron), this area will remain poorly served in Brazil, because HT Micron will focus exclusively on the highly competitive memory packaging segment.

Over the years the Brazilian government has instituted several laws and regulations to support the formation of an electronics industry with Brazilian content. This spans efforts from creating academic programs and research institutions to laws requiring industrial research investments to direct investments by the Brazilian development bank in industries. However, many hurdles remain.

This talk will describe successes and hurdles in the development of a successful microelectronics ecosystem in Brazil and will provide an up-to-date picture of this important emerging market.

1:00 - 2:00 PM: Industry Analyst & Panel Discussion
“Addressing Major Changes in the Supply and Demand for Advanced Packaging Technologies”

1:00 – 1:20 PM:
“Demand Outlook for 2.5 / 3D and Wafer Level Packaging”
Yole Development – Christophe Fitamant, Sales & Marketing Director
Wafer level packaging market is started to gain more and more significance in the semiconductor industry, showing a great potential for future growth. By 2017, the total number of wafers which will be manufactured using packaging technologies (bumping, TSV, RDL, etc.) is expected to reach 23% of the total IC semiconductor industry.

If historically, the wafer level packaging was mostly supported by flip-chip wafer bumping using electroplated gold and solder bumps, today the industry is benefiting from a large variety of different packaging technologies and platforms: WL Optics, 3D WLP, WL CSP (fan-in), Fan-out WLP Embedded Dies, 2.5D and 3DIC and Flip Chip.

1:20 – 1:40 PM:
“Supply Chain Implications for Advanced Packaging”
Gartner Dataquest – Mark Stromberg, Senior Analyst
Advanced packaging markets have been the major driver for back-end processing in recent years. Several device makers have stated that between the 30 and 20nm nodes essentially all their products will move to flip-chip and wafer-level type processes. This has, and will continue to, introduce new materials, production processes and equipment into the packaging space.

While advanced packaging has been a major growth segment, there are some competitive processes, particularly for the 3D Through Silicon Via (TSV) market that have shown some promise. TSV has been discussed as a major industry initiative for more than 5 years, but has yet to launch into mainstream markets and has been limited to very high end final electronic products such as chip servers. Reasons for this include production costs and device yield concerns.

This discussion will be focused on the forecasts for bumping processes and 3D technologies. Technical, yield and cost issues for these advanced processes will also be presented. Gartner’s most recent forecast for WLP equipment markets will be included in this presentation. Forecasts for the general packaging and test, WLP and TSV markets are also going to be reviewed during this talk.

1:40 – 2:00 PM:
Panel Format with Audience Questions & Answers
Moderator – Lee Smith
Wednesday, October 2, 2013 — Salon Rooms 1-6

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 2:00 PM – 3:30 PM | **Glass Interposers**
Chairs: Steve Annas, Triton Micro Tech; Aric Sherry, Corning Inc.
As we rapidly increase requirements on packaging & interconnect performance, we approach the limits of today’s technology, thus the need increases for a greater number of components in smaller packages using Silicon and Glass (TGV) emerging as the need for 2.5D & 3D passive Interposers grow to better support this next generation assembly. |
| 2:00 PM – 2:25 PM | **Testing Methods and Process for Improved Reliability**
Chairs: Mike Ferrara, RF Micro Devices; Akhlagh Rahiman, Thin Film Corp.
In this session, novel characterization methods will be introduced as well as unique approaches to new material sets providing improved reliability. |
| 2:00 PM – 3:30 PM | **Substrate Materials II (Ceramic & LTCC)**
Chairs: Dan Krueger, Honeywell FM&T; Ken Peterson, Sandia National Labs.
New and evolving applications, designs, and characterization of ceramic and low temperature cofired ceramic (LTCC) packaging solutions are provided in this session. Radio Frequency (RF), microfluidics, high power applications are all explored in this diverse session exploring the versatility of ceramic and LTCC substrate systems. |
| 2:00 PM – 3:30 PM | **MEMS & Sensor Packaging**
Chairs: Matt Apanius, SMART Commercialization Center for Microsystems; Ron Jensen, Honeywell
Packaging plays a critical role in the robustness associated with MEMS and sensor performance. As the applications tend to be quite varied, the interfaces between the sensor, package, electronics, and media need to be well-defined. Unique solutions for MEMS and sensor packaging interfaces will be presented in this session. |
| 2:00 PM – 3:30 PM | **Power Packaging II**
Chairs: Julie Adams, UBOTIC Company Ltd.; Mark Hoffmeyer, IBM Corporation
The objective of the “Think Thin” session is to address the numerous aspects of making IC packages “thinner”. This session enables discussion and presentations on the latest materials, process, design, and emerging applications of “thin” packaging technology. |
| 2:25 PM – 2:50 PM | **Thermal Characteristic and Performance of the Glass Interposer with TGV (Through-Glass Via)**
Chairs: Chia-Wen Lo, Wei-Chung Lin, Heng-Chieh Chien, Industrial Technology Research Institute (Chun-Hsien Chien, Ming-Ji Dai, Ra-Min Tain, Wei-Chung Lo, Yung-Jean Rachel Lu)
Advanced Warpage Characterization for FOOWLP
Isabel Barros, Nanium, SA (Marie Ribeiro)
Plating Reliability and High Frequency Testing of DuPont™ GreenTape™ 9K7 LTCC
Allan Beikmoharamadi, DuPont (Mike Champ, Patricia Graddy, Beth Hughes, Deepak Mor Nair, Jim Paris, Mike Smith, Steve Stewar)
A Current-Controlled PCB Integrated MEMS Till Mirror
Robert Dean, Auburn University (Colin Stevens, John Tatarchuk)
Active and Passive Component Embedding Into Low-cost Plastic Substrates Aimed at Smart System Applications
Maarten Cauwe, IMEC-Cmst (Bjorn Vannes d’emesteel, Johan De Baets, Jeroen van den Brand, Roel Kusters, Ashok Sritharan)
Electromigration in Pb-Free Solder: A Power IC Perspective
Tom Wassick, IBM Systems and Technology Group
Performance and Process Comparison between Glass and Si Interposer for 3D-IC Integration
An Analysis of Evolving Package Reliability Test Methodologies for Wireless Applications
Michael Ferrara, RFMD
Low Loss Power Distribution Network Design in Low Temperature Co-Fired Ceramic Technology
Michael D. Glower, University of California, Irvine (Brenton Simon, Gunjana Sharma, Sergei Zolot, Alexander Trosos, Andrii Shkel)
High and Moderate-Level Vacuum Packaging of Vibratory MEMS
Igor Prikhodko, University of California, Irvine (Brenton Simon, Gunjana Sharma, Sergei Zolot, Alexander Trosos, Andrii Shkel)
Modular Microsystems with Embedded Components
Christian Boettcher, Fraunhofer IZM / TUB (Andreas Ostmann, Martin Schneider-Ramelow)
Conceptual Development Using 3D Printing Technologies for 8kV SiC Power Module Package
Haotao Ke, North Carolina State University (Douglas Hopkins)
Glass Interposer Substrates: Fabrication, Characterization and Modeling
Aric Sherry, Corning Incorporated (John Keech, Garrett Plech, Scott Pollard, Satish Chaparala)
The Effectiveness of Screening Techniques for Revealing Cracks in High Volumetric Efficiency MLCCs
Alexander Teverovsky, Dell Services Federal Government, Inc.
Thick Film Pastes for Nitride Ceramics for High Power Applications
Marco Wenzel, Fraunhofer IKT (Richard Schmidt, Uwe Parfsch, Markus Eberstein)
Microfluidic Device Packaging
Leland Spangler, Aspen Microsystems
Size Matters – Embedding as an Enabler of Next-Generation SiPs
Nick Renaud-Bezet, AT&S (Mark Beesley, Christian Galler)
Improving System Performance with eGaN® FETS in DC-DC Applications
David Reusch, Efficient Power Conversion (EPC) (Alex Lidow, Johan Stroyn) | |
| 2:25 PM – 3:50 PM | **INTERPOSERS & 2.5/3D PACKAGING**
Salon 3
Modeling, Design, Test & Rel:
Salon 5
Materials & Processes:
Salon 1
Advanced Packaging & Assembly:
Salon 6
Advanced & Emerging Technologies:
Salon 2
Special Sessions on Packaging & System-Integration
Salon 4 |
| 2:25 PM – 3:50 PM | **INTERPOSERS & 2.5/3D PACKAGING**
Salon 3
Modeling, Design, Test & Rel:
Salon 5
Materials & Processes:
Salon 1
Advanced Packaging & Assembly:
Salon 6
Advanced & Emerging Technologies:
Salon 2
Special Sessions on Packaging & System-Integration
Salon 4 |
| 3:15 PM – 4:00 PM | COFFEE BREAK IN EXHIBIT HALL — 3:15 PM – 4:00 PM — sponsored by Lord Corporation (Ask Us How) |
Wednesday, October 2, 2013 — Salon Rooms 1-6

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00 PM – 4:25 PM</td>
<td>Development of TGV Interposer for 3D IC</td>
</tr>
<tr>
<td></td>
<td>Shintaro Takahashi, Asahi Glass Co., Ltd. (Kohei Horiuchi, Kentaro</td>
</tr>
<tr>
<td></td>
<td>Tatsukoshi, Motoshi Ono, Masaki Mikayama, Nobuhiko Imajo, Vorn</td>
</tr>
<tr>
<td></td>
<td>Sylgax, Tim Mobley)</td>
</tr>
<tr>
<td></td>
<td>Dicing Development for Low-K Copper Wafers using Nickel-Palladium-</td>
</tr>
<tr>
<td></td>
<td>Gold Bond Pads for Automotive Application</td>
</tr>
<tr>
<td></td>
<td>Tu Anh Tran, Freescale Semiconductor, Inc. (Wen Shi Koh, Y. K. Yu)</td>
</tr>
<tr>
<td></td>
<td>Low Temperature Co-fired Ceramic (LTCC) Technology for Development</td>
</tr>
<tr>
<td></td>
<td>of Components/Devices for Alternative Applications</td>
</tr>
<tr>
<td></td>
<td>Hansu Birol, Centro de Invocoes CSEM Brasil (Sergio Lopera,</td>
</tr>
<tr>
<td></td>
<td>Warner Bernarde Quintao, Erika Gyovary, James Buntante, Tiago</td>
</tr>
<tr>
<td></td>
<td>Alves)</td>
</tr>
<tr>
<td></td>
<td>Void Formation and Bond Strength Investigated for Wafer-level Cu-Sn</td>
</tr>
<tr>
<td></td>
<td>SLID Bonding</td>
</tr>
<tr>
<td></td>
<td>Astrid-Sofie B. Vardoy, SINTEF ICT (H.J. van de Wiel, Silan</td>
</tr>
<tr>
<td></td>
<td>Martinaen, Marcel Kouters, Greg Hayes, Hartmut Fischer, Knut</td>
</tr>
<tr>
<td></td>
<td>Asmundtveit, Adriana Lapadatu, Maaike Takio)</td>
</tr>
<tr>
<td>4:25 PM – 4:50 PM</td>
<td>Challenges of Adhesion Promotion for the Metalization of Glass</td>
</tr>
<tr>
<td></td>
<td>Interposers</td>
</tr>
<tr>
<td></td>
<td>Robin Taylor, Atotech Deutschland GmbH (Simon Bamberg, Michael</td>
</tr>
<tr>
<td></td>
<td>Merschy, Tobias Bernhard, Frank Bruening)</td>
</tr>
<tr>
<td></td>
<td>Immersion Tin for QFN-Packages to Create a 3-D Solder Joint for</td>
</tr>
<tr>
<td></td>
<td>Reliability Enhancement</td>
</tr>
<tr>
<td></td>
<td>Mustafa Oezkoek, Atotech (Hubertus Mertens, Jerome Bender, Atotech</td>
</tr>
<tr>
<td></td>
<td>Deutschland GmbH)</td>
</tr>
<tr>
<td></td>
<td>Mechanical Stress Analyses of Packaged Pressure Sensors for Very</td>
</tr>
<tr>
<td></td>
<td>High Temperatures</td>
</tr>
<tr>
<td></td>
<td>Roderich Zeiser, University of Freiburg - IMTEK (Suleman Ayub,</td>
</tr>
<tr>
<td></td>
<td>Juergen Wilde)</td>
</tr>
<tr>
<td></td>
<td>High Bandwidth PoP</td>
</tr>
<tr>
<td></td>
<td>Jason Cho, ASE (US), (Mike Hung, Morris Cheng, Timmy Lin, Calvin</td>
</tr>
<tr>
<td></td>
<td>Lee)</td>
</tr>
<tr>
<td>4:50 PM – 5:15 PM</td>
<td>Integrated Current Sensing Technology for Synchronous Buck Converters</td>
</tr>
<tr>
<td></td>
<td>Evan Reutzel, Texas Instruments Inc. (Scott Ragona, Rengang Chen,</td>
</tr>
<tr>
<td></td>
<td>David Jauregui)</td>
</tr>
<tr>
<td>4:50 PM – 5:15 PM</td>
<td>A fully automated execution of complex DOE to characterize</td>
</tr>
<tr>
<td></td>
<td>electroplating baths</td>
</tr>
<tr>
<td></td>
<td>Robert Forman, ancosys, Inc. (Norbert Schroeder)</td>
</tr>
<tr>
<td>4:50 PM – 5:15 PM</td>
<td>Packaging CMUTs for Gesture Sensing</td>
</tr>
<tr>
<td></td>
<td>Luis Nguyen, Texas Instruments Inc. (Ira Wygant, Peter Johnson)</td>
</tr>
<tr>
<td>4:50 PM – 5:15 PM</td>
<td>Thin PoP For Mobile Devices - Conquering Technological and Process</td>
</tr>
<tr>
<td></td>
<td>Challenges To Meet Customer Demands</td>
</tr>
<tr>
<td></td>
<td>Sachin Deo, Micron Technology</td>
</tr>
<tr>
<td>4:50 PM – 5:15 PM</td>
<td>Detailed Analysis of How Power Stage and Power Clip Products Achieve</td>
</tr>
<tr>
<td></td>
<td>Optimized Power Density</td>
</tr>
<tr>
<td></td>
<td>Arthur Black, Fairchild Semiconductor</td>
</tr>
<tr>
<td>5:15 PM – 5:40 PM</td>
<td>Improvement of Back-Side Cosmetic Defects And Wafer Strength</td>
</tr>
<tr>
<td></td>
<td>Erwin Cohen, IBM SRDC (Victoria L. Calero-DdelC, Irene Popova,</td>
</tr>
<tr>
<td></td>
<td>Richard Indyk, Joe Sullivan, John Fitzsimmons, Aaron Bicknell,</td>
</tr>
<tr>
<td></td>
<td>Lam Research)</td>
</tr>
<tr>
<td>5:15 PM – 5:40 PM</td>
<td>Compression Molding Solutions for Various High-end Package and Cost</td>
</tr>
<tr>
<td></td>
<td>Savings for Standard Package Applications</td>
</tr>
<tr>
<td></td>
<td>CH Ang, Towa USA</td>
</tr>
<tr>
<td>5:15 PM – 5:40 PM</td>
<td>Reducing Package Thickness to Accommodate Next Generation</td>
</tr>
<tr>
<td></td>
<td>Smartphone Designs</td>
</tr>
<tr>
<td></td>
<td>Brian Roggeman, Qualcomm Technologies, Inc (Rajneesh Kumar,</td>
</tr>
<tr>
<td></td>
<td>Mark Schwarz)</td>
</tr>
<tr>
<td>5:40 PM – 6:05 PM</td>
<td>EXHIBIT HALL RECEPTION: 5:30 PM – 7:30 PM — sponsored by</td>
</tr>
</tbody>
</table>

Save the Date!
Device Packaging 2014
March 10-14, 2014 Fountain Hills, AZ
Thursday, October 3, 2013 — Junior Ballroom F

INTERPOSERS & 2.5/3D PACKAGING

3D KEYNOTE PRESENTATIONS:

8:00 AM – 8:45 AM
Micron’s Hybrid Memory Cube — the New Standard for Memory Performance

Scott Graham - General Manager, Hybrid Memory Cube Technology
Micron Technology, Inc.

Mr. Graham joined Micron in 1994 as an applications engineer in the personal computing division. He has held various managerial positions within Micron and has spent the last 11 years in Micron’s memory products division, working on technical marketing for DRAM and NAND memory products. In recent years, Mr. Graham has represented Micron in various organizations responsible for setting industry standards, holding numerous vice-chair, chair, and board-level positions.

Mr. Graham holds a Bachelor of Science in Electronic Engineering Technology from DeVry University and a micro-MBA certification from Boise State University.

8:45 AM – 9:30 AM
Overview of Critical 3D Integration Challenges to Bring Products to Market

Douglas Coolbaugh - Derivatives and 3DI Manager
College of Nanoscale Science and Engineering (CNSE) at Albany SUNY Nanofab

Douglas Coolbaugh received his PhD in Physical Chemistry from SUNY Binghamton, NY in 1987. Doug retired from IBM in 2010 after working 30 years in microelectronics development. Presently he is the Assistant VP of derivatives at the College of Nanoscale Science and Engineering.

9:30 AM – 10:15 AM
Contributing to 3D Interconnect (3DIC): One Toolmakers Approach to Meeting the Challenge

Tom Walsh - President
TEL NEXX at Tokyo Electron

Dr. Tom Walsh is President of TEL NEXX at Tokyo Electron, a leading worldwide semiconductor equipment provider focused on building advanced packaging tools. Walsh led teams of semiconductor professionals to successfully deliver game changing technologies to the market, including the growth and eventual sale of NEXX Systems to Tokyo Electron for Advanced Packaging Deposition (2012), the development of the Novellus Sabre Plating system for Copper Interconnect (1998) and the commercialization of the IBM Atomic Force Microscope (1993). Over the past 25 years, Walsh held roles from scientist to corporate executive at IBM, Novellus and NEXX Systems. He holds a Ph.D. in analytical chemistry from Purdue University and an MBA from the Stern Business School at NYU.

8:00 AM – 12:00 PM
An entire morning of the conference dedicated to 2.5D & 3D, Interposers, Packaging...
3D IC PANEL DISCUSSION:

What are preventing 3D IC integrations from High Volume Manufacturing?

Moderator: John H. Lau, ITRI, Taiwan

3D IC integration with through-silicon via (TSV) technology provides the opportunity for the shortest chip-to-chip and the smallest pad size and pitch interconnects. Compared with other interconnection technologies, the advantages of 3D IC integration include better electrical performance, lower power consumption, wider data width and thus bandwidth, higher density, smaller form factor and lighter weight. What are preventing 3D IC integrations from High Volume Manufacturing? In this panel, the challenges on costs, business models, value chains, power distribution networks, floorplanning constraints, stacking solutions, tests, standards, ecosystem, temporary bonding and de-bonding of 3D IC integration will be discussed and some solutions are provided.

“Challenges of Implementation of 3D Integration into Application Environment”

Challenges for volume production in 3D integration are, for example, extended standards, flexible production lines, value chain oriented test procedures and the exchange of application experience. With improvement of these emphases we will overcome today’s major barrier, the expenses of implementation and products.

Klaus-Dieter Lang, Head of the Institute Fraunhofer - IZM

Professor Lang began his career as a Research Engineer at Humboldt University Berlin, where he spent 10 years (1981 to 1991) working in the areas of Microelectronic Assembly, Packaging and Quality Assurance. In 1991, he moved to SLV Hannover to build up a Department for Microelectronic and Optic Components Manufacturing. He joined Fraunhofer IZM 20 years ago and was initially responsible for R&D activities in the area of Chip Interconnection Technologies. From 2001 to 2005 he coordinated Fraunhofer IZM’s Lab on Microsystems Engineering in Berlin-Adlershof, and from 2003 to 2005 he was the Head of the Department of Photonic and Power System Assembly. In 2006, he was appointed as the Deputy Director of Fraunhofer IZM, a position he held till 2010. Since 2011 he has been the Director of the Institute. Professor Lang Chairs the German Chapter of IEEE-CPMT and he is a member of numerous scientific boards and conference committees. He is the author and co-author of 3 books and more than 130 publications in the field of Wire Bonding Technologies, Microelectronic Packaging, Microsystems Technologies and Chip-on-Board Technologies. He studied Electrical Engineering at the Humboldt University Berlin, and holds a Master’s degree and two Doctorate degrees.

“TSV (R)evolution: 2.5D Interposers, 3D Memory Stacks, 3D Logic on Logic”

Adoption of TSVs in high volume applications such as wireless mobile depends on balancing value propositions more heavily weighted by cost considerations. Direct 3D TSV logic on logic stacking must also solve several key technical challenges before it will be ready for product applications, including 3D power distribution networks, floorplanning constraints, and mechanical stress management.

Matt Nowak, Senior Director, Advanced Technology at Qualcomm

Matt Nowak is Senior Director of Engineering in the VLSI Technology Group of Qualcomm Technologies, Inc. His responsibilities include leadership of Advanced Technology Initiatives such as Through Silicon Stacking, Advanced Memory technology, Design for Silicon, Spintronics, and More than Moore initiatives. He manages a combination of internal advanced development teams, supplier JDPs, and consortia and university projects.

Matt has over 30 years of semiconductor industry experience in a variety of technical, management, and business roles including wafer fab processes and devices, CMOS ASIC technology, compound semiconductor RF devices, package design and assembly, IC design tools and methodologies, technology transfer, foundry interfacing, and advanced technology. Prior to joining Qualcomm in 2004, Matt worked for the Semiconductor Development group of Unisys/Burroughs Corporation and for the Research Laboratory of Varian Associates. He holds BS and Masters degrees in electrical engineering from Cornell University and has carried out graduate studies at Stanford University and UC San Diego. Matt is a Senior Member of the IEEE with 26 granted US patents and numerous publications and conference presentations.

“Challenges of 2.5D and 3D Architectures”

2.5D and 3D architectures face a variety of challenges, most notably those around business model and ecosystem development. This panelist will focus on how Micron is addressing these challenges through the development of innovative solutions along with an ecosystem of OEMs, enablers and advanced toolset providers for their Hybrid Memory Cube.

Scott Graham, General Manager, DRAM Marketing at Micron Technology

Mr. Graham joined Micron in 1994 as an applications engineer in the personal computing division. He has held various managerial positions within Micron and has spent the last 11 years in Micron’s memory products division, working on technical marketing for DRAM and NAND memory products. In recent years, Mr. Graham has represented Micron in various organizations responsible for setting industry standards, holding numerous vice-chair, chair, and board-level positions.

Mr. Graham holds a Bachelor of Science in Electronic Engineering Technology from DeVry University and a micro-MBA certification from Boise State University.
"Temporary Bonding and Debonding Challenges"

There are several techniques to do temporary bonding/debonding, which have to be evaluated to suit a specific 3D IC process flow. With each of these techniques, a complex set of manufacturable processes/materials and equipment have to be developed. It is apparent that a large scale manufacturing requires collaboration of process, materials and equipment developers with OSATs and IDMs.

Rajen Chanchani, Consultant (Formerly with Sandia National Laboratory)

Rajen Chanchani is currently a Consultant in electronic integration technologies. Prior Rajen was managing various advanced packaging and integration technologies for 32 years at Sandia National Laboratories, and at AT&T Bell Laboratories. He received his Ph.D. and M.S. in Materials Science & Engineering from the University of Florida and B. Tech. from the Indian Institute of Technology, Kanpur, India. Rajen is an IEEE Fellow, International Microelectronic and Packaging Society (IMAPS) Fellow. Rajen is also a recipient of William D. Ashman Award for his contribution to advance packaging technologies. Rajen is currently First Past-President of IMAPS.

Rajen has an extensive experience in 3D Integration technologies, micro-systems packaging, wafer-level packaging, chip-scale-packaging, multi-chip modules, thin and thick-film, chip-on-board, flip-chip, MEMS packaging and surface mount technologies and modeling & simulation.

"Status of TSV Manufacturing - Reality Check"

How far we’ve come, where we are, and how much further do we need to go before HVM for 2.5/3D products?” These questions will be discussed and some answers will be provided.

Rich Rice, Sr. Vice President of Sales, ASE (US) Inc.

Rich Rice currently serves as Senior Vice President of Sales for ASE (U.S.) Inc., with responsibilities within the North America region. Previously, he held various engineering and business development positions at Amkor Technology and National Semiconductor Corporation. Mr. Rice serves in advisory roles for MEPTEC as well as the IMAPS Global Business Council. He holds a BS degree in Agricultural Engineering from the University of Illinois.
Thursday, October 3, 2013 — Salon Rooms 1-6

<table>
<thead>
<tr>
<th>INTERPOSERS & 2.5/3D PACKAGING Salon 3</th>
<th>MODELING, DESIGN, TEST & REL Salon 5</th>
<th>MATERIALS & PROCESSES Salon 1</th>
<th>ADVANCED PACKAGING & ASSEMBLY Salon 6</th>
<th>ADVANCED & EMERGING TECHNOLOGIES Salon 2</th>
<th>SPECIAL SESSIONS ON PACKAGING & SYSTEM-INTEGRATION Salon 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 PM – 1:25 PM</td>
</tr>
<tr>
<td>Technologies and Methods for 2.5/3D Packaging and Integration</td>
<td>Lithography Process Optimization for 3D and 2.5D Applications</td>
<td>Integrated Passive Devices and TSV, a Disruptive Technology for Miniaturization</td>
<td>RF Device Integration on Glass Interposer toward 3D-IPAC Packages</td>
<td>Advanced Devices and Packaging for Harsh Environment Applications</td>
<td>Electronic Packaging for Harsh Environment Applications</td>
</tr>
<tr>
<td>Chairs: Anwar Mohammed, John Hunt, ASE US</td>
<td>Chip Design of an 1 V RF Receiver Front-End for 5.6-GHz DSRC Applications</td>
<td>Catherine Bourel, IPDIA (S. Borel, A. Lefevre, CEA-Leti, MINATEC; F. Voiron, J-R. Tenailleau, IPDIA)</td>
<td>RF Device Integration on Glass Interposer toward 3D-IPAC Packages</td>
<td>Advanced Devices and Packaging for Harsh Environment Applications</td>
<td>Extreme environment entails high temperature, extreme humidity levels, stress, and vibrations. This session addresses these issues in particular modeling and analysis of failure and design for reliability through thermal and power cycling and materials selection.</td>
</tr>
<tr>
<td>This session covers some emerging developments in enabling the manufacturing of 2.5/3D products. The papers cover some interesting and pertinent topics like the move of the BEOL processes towards the front end, stacking high speed memory, underfill effectiveness, reduction stepper challenges, litho optimization, IPDs and POP reliability.</td>
<td>Yoichiro Sato, Asahi Glass Company (Vijay Sukumaran, Gary Menezes, Bruce Chou, Junki Mir, Motooshi Ono, Choouki Karoui, Franck Dosseul, Christian Nopper, Madhavan Swaminathan, Venky Sundaram, Rao Tummala)</td>
<td>Development of low temperature sintered nano silver pastes using MD technology and resin reinforcing technology</td>
<td>Koji Sasaki, NAMICS Corporation (Ken Araujo, Nontsuka Mizumura)</td>
<td>Advanced Devices and Packaging for Harsh Environment Applications</td>
<td>Extreme environment entails high temperature, extreme humidity levels, stress, and vibrations. This session addresses these issues in particular modeling and analysis of failure and design for reliability through thermal and power cycling and materials selection.</td>
</tr>
<tr>
<td>RF and microwave packaging applications present unique packaging challenges. This session brings together a wide range of papers on various topics including packaging for RF-MEMS, RFIC, and antennas.</td>
<td>Packaging of 1.3 Tbs Full Duplex Optical Interconnect</td>
<td>Preparation of a Wafer-Level Hemispherical Micro Polymer Lens Array with Improved Performance Using a Low Cost Glass Mold</td>
<td>Shuki Benjamin, Compass-EOS (Kobi Hasharoni Michael Mesh)</td>
<td>High Temperature Sintered Interconnects Formed by Transient Liquid Phase Sintering</td>
<td>Patrick McCluskey, University of Maryland CALCE</td>
</tr>
<tr>
<td>Novel bonding materials and processes will be introduced in this session for overcoming the continuing challenges with the bonding materials and the bonding processes in various types of applications.</td>
<td>Silver Oxalate: Towards a New Solder Material for Highly Dissipative Electronic Assemblies</td>
<td>Preparation of a Wafer-Level Hemispherical Micro Polymer Lens Array with Improved Performance Using a Low Cost Glass Mold</td>
<td>Shuki Benjamin, Compass-EOS (Kobi Hasharoni Michael Mesh)</td>
<td>High Temperature Sintered Interconnects Formed by Transient Liquid Phase Sintering</td>
<td>Patrick McCluskey, University of Maryland CALCE</td>
</tr>
<tr>
<td>Rajiv Roy, Rudolph Technologies</td>
<td>Mohammed Al-Amin, Anglia Ruskin University (Sufian Yousel, Barry Morris)</td>
<td>Mohammad Al-Amin, Anglia Ruskin University (Sufian Yousel, Barry Morris)</td>
<td>Takuto Yamaguchi, Hitachi, Ltd. (Osamu Ikeda, Shohei Hata, Yuichi Oda, Kazuma Kuroki)</td>
<td>Compact Photonic Package for High-Power E-band (60-90 GHz) Photoreceiver Modules</td>
<td>Fully 3D Printed 2.4 GHz Bluetooth/Wi-Fi Antenna</td>
</tr>
<tr>
<td>This session will address packaging of high bandwidth optical interconnects and modules. The performance of various RF LED modules will also be discussed from a reliability viewpoint.</td>
<td></td>
<td>Vitaly Rymanov, University of South Florida, P.R. China (Shunjin QIN)</td>
<td>Timo-teoki, Fraunhofer IZM; Lou Nguyen, Texas Instruments</td>
<td>Paul Deffenbaugh, University of Texas at El Paso (Kenneth Church, The University of Texas El Paso; Josh Goldfarb, Xudong Chen, nScrypt, Inc.)</td>
<td>Paul Deffenbaugh, University of Texas at El Paso (Kenneth Church, The University of Texas El Paso; Josh Goldfarb, Xudong Chen, nScrypt, Inc.)</td>
</tr>
</tbody>
</table>
| COFFEE BREAK IN FOYER: 2:15 PM — 2:30 PM — sponsored by LORD AskUsIlow™
Thursday, October 3, 2013 — Salon Rooms 1-6

<table>
<thead>
<tr>
<th>TIME</th>
<th>SESSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:30 PM – 2:55 PM</td>
<td>INTERPOSITORS & 2.5/3D PACKAGING (Salon 3), MODELING, DESIGN, TEST & REL (Salon 5), MATERIALS & PROCESSES (Salon 1), ADVANCED PACKAGING & ASSEMBLY (Salon 6), ADVANCED & EMERGING TECHNOLOGIES (Salon 2), SPECIAL SESSIONS ON PACKAGING & SYSTEM-INTEGRATION (Salon 4)</td>
</tr>
<tr>
<td>2:30 PM – 2:55 PM</td>
<td>A Study on the Effectiveness of Underfill in the HBM with TSV
Woong Sun Lee, SK hynix (Ho Young Son, Jin Soo Lee, Chul Gun Yoon, Min Suk Suh, Nam Seong Kim)</td>
</tr>
<tr>
<td>2:30 PM – 2:55 PM</td>
<td>Improved Compensation for a Reduction Stepper to Meet the Challenges for Advanced Packaging Applications
James Webb, Rudolph Technologies (Elvino Da Silveira, Steve Gardner, Frank Namgung)</td>
</tr>
<tr>
<td>2:30 PM – 2:55 PM</td>
<td>Microstructure and Fracture Property of Cu/In/Cu Joints in 3D Package
Yanhong Tian, Harbin Institute of Technology (Chunjin Hang, Chunqing Wang)</td>
</tr>
</tbody>
</table>
Natel’s First Annual Supplier of the Year Awards

NATEL EMS will recognize 13 of its best suppliers Monday evening with its Natel supplier of the Year awards during IMAPS 46th annual International Symposium. The awards presentation will be held at the Rosen Centre Hotel in Orlando, FL during the Welcome Reception, Monday, September 30, 2013.

“The Supplier of the Year award winners represents a partnership, dedication and commitment to consistently perform above expectations. This has played an important role in Natel’s success,” said Sudesh Arora, President of Natel EMS. “ We appreciate the efforts of these suppliers and look forward to a mutually beneficial continued relationship in the future.”

The awards recognize the significant contributions of Natel suppliers as part of the company’s product and performance achievement. The winners represent Natel’s view, as the best the microelectronics/electronics industry has to offer in innovative technology, superior quality, outstanding launch support, crisis management and competitive total enterprise cost solutions.

The suppliers of the Year winners are chosen by the Natel team of purchasing, engineering, quality, manufacturing and logistics executives.

The first annual awards to be given to Natel suppliers!
Please consider participating in the IMAPS 2013 Student Programs. IMAPS leaders have designed the programs listed below to provide students with technical information, industry insight, and valuable connections. Please see more conference information at www.imaps.org/imaps2013 or contact Brianne Lamm at blamm@imaps.org for further benefits of participating.

2013 Student Activities Chairs:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venky Sundaram</td>
<td>Georgia Tech University PRC</td>
<td>vs24@mail.gatech.edu</td>
</tr>
<tr>
<td>Mike Newton</td>
<td>Newton Cyberfacturing</td>
<td>mike@newtoncyberfacturing.com</td>
</tr>
<tr>
<td>Ege Engin</td>
<td>San Diego State University</td>
<td>aengin@mail.sdsu.edu</td>
</tr>
<tr>
<td>Tom Weller</td>
<td>University of South Florida</td>
<td>weller@usf.edu</td>
</tr>
</tbody>
</table>

Professional Development Course (PDC) Monitor:

Students have the opportunity to serve as a PDC Monitor and attend the course free of charge. Monitor must be a full time student and are assigned on a first-come basis. Sign up early by e-mailing Brian Schieman (bschieman@imaps.org) with your top three choices no later than September 6.

Plant Tour — Micross Components:

Micross Components will provide a valuable industry tour that will highlight two of their facilities in Orlando. Micross Components is a leading global provider of distributed and specialty electronic components for military, space, medical, and demanding industrial applications. Operating as a single source for high reliability and state of the art electronics, Micross™ solutions range from bare die and wafer processing to advanced and custom packaging to component modifications and related interconnect offerings. With a 35+ year heritage, Micross possesses the design, manufacturing and logistics expertise needed to support an application from start to finish. The plant tour is set for Wednesday, October 2: bus leaving Rosen Centre at 11:30am and returning by 2:00pm (subject to change).

The Micross Tour is open to US Citizens ONLY. Students and industry professionals are welcome to participate. Micross will manage the approved attendee list and communicate with registrants as the tour approaches.

Welcome Reception:

The reception offers a good opportunity for students and advisors to talk with industry professionals in a relaxed setting to build relationships and gain valuable information.

Student Paper Competition:

Selected student authors can deliver paper presentations that will be evaluated on technical content, presentation skills, and the written manuscript. Winning students will receive cash prizes that total $3000 and recognition in IMAPS publications.

Student Poster Competition:

Student authors can deliver poster presentations in the University Poster Session that will be evaluated on technical content, and presentation skills. Winning students will receive cash prizes that total $500 and recognition in IMAPS publications.

Student Chapter Booth Competition:

Highlight your academic research and programs at your student booth. Gain advice and recognition from industry leaders. Student booths will be evaluated by a panel of judges on various criteria. Winning chapter booths will receive cash prizes and IMAPS magazine recognition. Booth space is complimentary for IMAPS student members. Winning student booths will receive cash prizes that total $750 and recognition in IMAPS publications.

Please contact Brianne Lamm (blamm@imaps.org) for more information or to reserve your complimentary booth. Booth judging will be on Tuesday, October 1, 1:30 pm to 2:30 pm (Tentative).

Employment Center:

IMAPS offer an online JOBS Marketplace for posting resumes, searching job openings, and more: http://jobs.imaps.org.
REFINING FOR TOMORROW

Reasons you should recycle with Reldan Metals:

- **Your World**: Toxic materials from electronics, manufacturing waste and other scrap materials are an increasingly large burden on our eco-system.

- **Your Business**: We get involved in your business to help determine what can be refined and the best recycling methods to get you the most value.

- **Your Bottom Line**: Recycling can be profitable. With Abington Reldan Metals as your partner, you get the most from your precious metal bearing scrap.

Our state of the art LEED certified refinery is zero-discharge, ISO 14001:2004 certified, e-Stewards certified, R2 certified and CHWMEG reviewed.

Reldan Metals, Co.
Division of Abington Reldan Metals, LLC

Maximizing Value from Precious Metal Scrap
Orlando Theme Parks and Other Area Attractions

Walt Disney World
Discounted Advance Purchase Tickets

IMAPS has teamed up with Disney for a special offer for those attending IMAPS 2013 in Orlando. Have a little fun while visiting Orlando for our 46th Symposium.

If you’re planning a trip to Walt Disney World® Resort during your participation at IMAPS 2013 Orlando in September-October 2013, please visit www.mydisneymeetings.com/imps13/ for information about ordering tickets in advance, at the special conference rate!

Walt Disney World
Orlando, Florida
- Magic Kingdom® Park
- Epcot®
- Disney’s Animal Kingdom®
- Disney-MGM Studios

Universal Studios
Florida Center, Orlando, Florida
- Universal Studios Florida
- Universal Studios Islands of Adventure

SeaWorld Orlando
Orlando, Florida

Wet 'n Wild
Florida Center, Orlando, Florida

Kennedy Space Center

Gatorland
Orlando, Florida

Pirate’s Cove Adventure Golf
Orlando, Florida

Sports Dominator
Florida Center, Orlando, Florida

WonderWorks
Orlando, Florida

The Florida Mall
Orlando, Florida

Orange Tree Golf Club
Orlando, Florida

Fun Spot Action Park
Florida Center, Orlando, Florida

Fort Gatlin Recreational Park
Orlando, Florida

Bill’s Airboat Adventures
Oviedo, Florida

Johnny’s Fillin’ Station Cafe
Wadewick Park, Orlando, Florida

Ripley’s Believe It Or Not Orlando
Orlando, Florida

Buena Vista Watersports
Orlando, Florida

Harry P. Leu Gardens
Rowena Gardens, Orlando, Florida

Cinemark Festival Bay Mall
Florida Center, Orlando, Florida

Lake Buena Vista Factory Stores
Orlando, Florida

Long’s Christian Book & Outlet
Altamonte Springs, Florida

Tibet-Butler Preserve
Orlando, Florida

Sleuths Mystery Dinner Theatre
Orlando, Florida

Mennello Museum of American Folk Art
Lake Formosa, Orlando, Florida

Ventura Country Club Golf Course
Ventura, Orlando, Florida

Orlando Science Center
Lake Formosa, Orlando, Florida

IMAPS2013.org • Orlando, Florida
From Concept to Prototype
One-Stop R&D Labs

Electronics Design, Simulation & Prototyping
RF & digital hardware, firmware, software
System integration

RFID and Wireless Sensors
Antenna simulation
Pattern measurement

Electronics Miniaturization
Chip scale packaging
SMT circuit board assembly

Reliability and Failure Analysis
Predictive modeling and reliability testing

Microfabrication
Thin film deposition, thick film printing
Plating, Wafer processing

Center for Nanoscale Science and Engineering
North Dakota State University
1805 NDSU Research Park Dr, Fargo ND 58102
www.ndsu.edu/cnse 701-231-6338

UPCOMING IMAPS EVENTS:

Thermal Management Workshop & Tabletop Exhibition
November 5-7, 2013 | Los Gatos, CA
www.imaps.org/thermal

Wire Bonding Workshop & Tabletop Exhibition
January 21-22, 2014 | San Jose, CA
www.imaps.org/wirebonding

Global Business Council Spring Conference (GBC 2014)
March 9-10, 2014 | Fountain Hills, AZ
www.imaps.org/gbc

10th Device Packaging Conference & Exhibition
March 10-13, 2014 | Fountain Hills, AZ
www.imaps.org/devicepackaging

RF/Microwave Workshop
April 2014 | San Diego, CA (TBD)
www.imaps.org/rf

IMAPS New England Chapter 2014 Symposium & Expo
May 6, 2014 | Boxborough, MA
www.imapsne.org

HITEC 2014 (High Temperature Electronics Conference & Exhibition)
May 13-15, 2014 | Albuquerque, NM
www.imaps.org/hitec

IMAPS 2014 – 47th International Symposium on Microelectronics
October 13-16, 2014 | San Diego, CA
www.imaps2014.org
The 47th International Symposium on Microelectronics is being organized by the International Microelectronics Assembly and Packaging Society (IMAPS). The IMAPS Technical Committee seeks original papers that present progress on technologies throughout the entire microelectronics/packaging supply chain. The 47th Symposium on Microelectronics will feature 6 technical tracks that span the two and a half days of sessions on: **INTERPOSERS & 2.5/3D PACKAGING; MODELING, DESIGN, TEST & RELIABILITY; MATERIALS & PROCESSES; ADVANCED PACKAGING & ASSEMBLY; ADVANCED & EMERGING TECHNOLOGIES; and SPECIAL SESSIONS ON PACKAGING & SYSTEM-INTEGRATION**, as well as an Interactive Student Poster Session.

Technical sessions are being planned for these tracks, and abstracts will be considered on the topics listed below. Abstracts are rated by the technical committee members and are selected into the sessions by the session chairs. Authors should identify their preferred session when submitting. Abstracts should highlight the major contributions of the work in one or more of these areas. **All abstracts submitted must represent original, previously unpublished work.**

<table>
<thead>
<tr>
<th>Track</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERPOSERS & 2.5/3D PACKAGING</td>
<td>• TSV Materials & Processes • Silicon Interposers • Applications, Markets & Challenges for 2.5/3D Packaging & Integration • Glass Interposers • Technologies & Methods for 2.5/3D Packaging & Integration • Stacked Dies, Packages and Memories • 3D Simulation and Modeling • Advanced 3D Materials • PWB Embedded Device Technologies • High Density Interposers & Integrated Passives • Vertical Interconnects • Cost Considerations for 2.5/3D</td>
</tr>
<tr>
<td>MODELING, DESIGN, TEST & RELIABILITY</td>
<td>• Design for Reliability • Modeling & Design for Si, PI and EMC • Thermal and Thermo-Mechanical Modeling • Testing Methods and Process • RF and Microwave Packaging • Mechanical Modeling and Related Metrology • Design for Manufacturing • Package Reliability Testing</td>
</tr>
<tr>
<td>MATERIALS & PROCESSES</td>
<td>• Advanced Materials & Novel Assembly Processes • Polymers, Underfill/Encapsulants and Adhesives • Substrate Materials • Ceramic & LTCC Packaging • Bonding Materials and Processes • Embedded and Integrated Passives • Thick / Thin Films</td>
</tr>
<tr>
<td>ADVANCED PACKAGING & ASSEMBLY</td>
<td>• Pb-Free Solder & ROHS • Wirebonding & Stud Bumping • Flip Chip Interconnects & Technologies • MEMS & Sensor Packaging • LED and Optoelectronics Packaging • Wafer Level Packaging • Chip Scale Packaging • Copper Pillar Wafer Thinning • Wafer Bumping • Warpage Characterization and Mitigation • Integration, Mounting & Assembly of Packaged LEDs • Industry Trends & Market Drivers in Solid State Lighting • Optics & Lenses (including phosphor incorporation) • Gyros & Accelerometers • Sensors & RF Devices • Microfluidics & Bio-MEMS • Optical MEMS (MOEMS)</td>
</tr>
<tr>
<td>ADVANCED & EMERGING TECHNOLOGIES</td>
<td>• Medical Device Packaging • Emerging Technologies • High Performance Interconnect & Boards • Printed Electronics & Additive Manufacturing • Novel Interconnections, Fabrication & Analysis Methods • Packaging for Class III Medical Implants • Human Portable Monitoring Devices • Patient Monitoring • Enabling Technologies for Power Management • Microfluidics, Bio-Sensors & Bio-Chips • Thin & Printed Battery Technology • Membrane & Capacitive Switches • Cyber Design/Cyberfacturing • Printable Display & Lighting</td>
</tr>
<tr>
<td>SPECIAL SESSIONS ON PACKAGING & SYSTEM-INTEGRATION</td>
<td>• European Perspective • Asian Perspective • Southeast USA Perspective • Think Thin: Thin IC Packaging For Mobile Devices • Automotive, Industrial & Harsh Environment Electronics Applications • Packaging for Military Applications • Power Packaging</td>
</tr>
</tbody>
</table>

Please send your 500 word abstract electronically only using the On-line submittal form at: www.imaps.org/abstracts.htm. All Speakers are required to pay a reduced registration fee. If you need assistance with the on-line submittal form, please email Brian Schieman at bschieman@imaps.org or call 412-368-1621.
Manufacturing Ideas
Creating Solutions

Our Strengths:
- Substrates (Thick/Thin Film, Aln, HTCC, LTCC)
- Hybrids, MCM, RF/Microwave Products
- PWB and Box Assemblies
- Complete Rack Assemblies

818.734.6500 | www.natelems.com
AS 9100 MIL-PRF-38534