Canberra’s Tomographic Gamma-Ray Scanning (TGS) System for small containers

Ram Venkataraman, Sasha Philips, Susan Smith, Marcel Villani
Canberra Industries (AREVA BU)
800 Research Parkway, Meriden, CT 06450

Presented at the 2014 NDA Users Group Meeting, Atlanta, GA
Canberra Tomographic Gamma-Ray Scanner
Can-TGS for small containers

- Canberra invested in the Can-TGS as an R&D tool.
 - To conduct TGS related studies, new developments
 - Serves as a test bed for testing hardware and software upgrades
 - Used as a training tool for Canberra personnel, and for customer demos.
 - Can be operated in the SGS mode too

- Recent measurements on the Can-TGS
 - Characterized the system using representative matrices and point sources; assayed heterogeneous matrices; compared SGS vs. TGS
 - Exploring the limits of TGS sensitivity and Minimum Detectable Activities (in progress)
 - QA testing updated version of NDA2000 software for TGS functionalities (in progress)
Can-TGS Supported Containers

<table>
<thead>
<tr>
<th>Container Description</th>
<th>Diameter</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE 3013</td>
<td>5" [127 mm]</td>
<td>10" [254 mm]</td>
</tr>
<tr>
<td>1 US Gal</td>
<td>7.375" [187 mm]</td>
<td>7.312" [185 mm]</td>
</tr>
<tr>
<td>2 US Gal</td>
<td>9.75" [247 mm]</td>
<td>9.25" [235 mm]</td>
</tr>
<tr>
<td>3.5 US Gal</td>
<td>11.875" [302 mm]</td>
<td>10.25" [260 mm]</td>
</tr>
<tr>
<td>5.0 US Gal</td>
<td>11.875"[302 mm]</td>
<td>13.35"[339 mm]</td>
</tr>
</tbody>
</table>
Quality of assays and images

TGS Technique

- Combines high resolution gamma spectroscopy with image reconstruction techniques
- Solves for photon attenuation and radionuclide distribution on a voxel (volume element) by voxel basis
- Uses both gamma ray transmission + passive emission measurement

- Scans performed with three degrees of freedom
 - Rotation
 - Elevation
 - Translation – breaks axial symmetry and ensures equal weighting for all voxels

» Attenuation of 662 keV Cs-137
» Emission of 662 keV Cs-137
» Emission of 1332 keV Co-60

TGS collimator options

NDA Systems - Canberra TGS
Main Components

- Detector – Canberra BE3825 (other detector options available)
- Acquisition Electronics – LYNX DSA, Pulser
- Rotator-Translator –
- Collimator(s)
 - TGS: Diamond shaped with apertures: 0.635 cm, 1.27 cm, 2.54 cm
 - SGS: Rectangular shaped: 1.9 cm vertical and 10.0 cm horizontal
- Transmission Source – 15 mCi Eu-152 (other sources such as Ba-133 can be used)
- Automation Control (PLC) –
- Acquisition and Analysis Software - NDA2000
Characterization of Can-TGS

TABLE VIII. Point source verification results for Walnut Matrix

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Reported Activity [μCi]</th>
<th>Uncertainty [μCi]</th>
<th>Measured / True</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle of Drum – TGS</td>
<td>20.8</td>
<td>2.3</td>
<td>0.96</td>
</tr>
<tr>
<td>Middle of Drum – SGS</td>
<td>23.3</td>
<td>0.3</td>
<td>1.08</td>
</tr>
<tr>
<td>Edge of Drum – TGS</td>
<td>23.5</td>
<td>2.5</td>
<td>1.09</td>
</tr>
<tr>
<td>Edge of Drum – SGS</td>
<td>21.2</td>
<td>0.2</td>
<td>0.98</td>
</tr>
</tbody>
</table>

TABLE VI. 5 Gallon Pail, 2.54 cm collimator TGS verification results for empty drum

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>21.6</td>
<td>2.3</td>
<td>21.57</td>
<td>3.24</td>
<td>1.00</td>
<td>0.18</td>
</tr>
<tr>
<td>Ba-133</td>
<td>16.6</td>
<td>0.4</td>
<td>17.14</td>
<td>0.34</td>
<td>0.97</td>
<td>0.03</td>
</tr>
<tr>
<td>Cs-137</td>
<td>87.8</td>
<td>2.3</td>
<td>90.63</td>
<td>2.19</td>
<td>0.97</td>
<td>0.03</td>
</tr>
</tbody>
</table>

TABLE VII. 5 Gallon Pail, 1.9 cm collimator SGS verification results for empty drum

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>23.4</td>
<td>0.1</td>
<td>21.57</td>
<td>3.24</td>
<td>1.08</td>
<td>0.16</td>
</tr>
<tr>
<td>Ba-133</td>
<td>15.4</td>
<td>0.4</td>
<td>17.14</td>
<td>0.34</td>
<td>0.90</td>
<td>0.02</td>
</tr>
<tr>
<td>Cs-137</td>
<td>90.7</td>
<td>0.6</td>
<td>90.63</td>
<td>2.19</td>
<td>1.00</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*Summed Spectra Results.

TABLE IV. Matrices Description

<table>
<thead>
<tr>
<th>Matrices</th>
<th>Gross Weight [kg]</th>
<th>Density [g/cc]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty</td>
<td>2.3</td>
<td>0.001</td>
</tr>
<tr>
<td>Combustibles</td>
<td>4.8</td>
<td>0.133</td>
</tr>
<tr>
<td>Cedar Mulch</td>
<td>7.8</td>
<td>0.292</td>
</tr>
<tr>
<td>Walnut Shells</td>
<td>15</td>
<td>0.673</td>
</tr>
</tbody>
</table>

Fig. 4. Matrix photographs. Clockwise, from bottom-left: Empty, Cedar Mulch, Combustibles, Walnut shells.
TGS vs. SGS

- TGS accuracy is better than SGS
 - For matrices that are heterogeneous
 - For source distributions that are non-uniform

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>1.08</td>
<td>0.94</td>
</tr>
<tr>
<td>Ba-133</td>
<td>1.65</td>
<td>1.02</td>
</tr>
<tr>
<td>Cs-137</td>
<td>0.72</td>
<td>0.82</td>
</tr>
</tbody>
</table>
Sensitivity Limits of TGS

- The TGS Analysis is ROI based using two continuum regions, bounding the peak ROI for the background determination.
- The extent of these regions may be different and are therefore weighted.

\[
B = W_1B_1 + W_2B_2 \\
\sigma_B^2 = W_1^2B_1 + W_2^2B_2
\]

- Where \(B_1\) and \(B_2\) are the counts in the left and right background ROIs.
- Following the Currie formalism, the Critical Limit (the limit below which a signal cannot be reliably detected) is given by:

\[
L_c = k\sqrt{B + \sigma_B^2}
\]

- \(k\) is the abscissa of the Gaussian distribution corresponding to a given confidence level.
Exploring the sensitivity limits of TGS

- Critical Limit L_C established (at 95% confidence level) by measuring item with non-radioactive matrix.
 - Diamond collimator with 1 inch aperture used in measurements
 - 1 hour assay (30 minute emission scan)
 - 5 gallon pail with walnut shell matrix (0.67 g.cm$^{-3}$)

- Next, assays were performed with a single point source of a given radionuclide (133Ba, 137Cs, 60Co) with progressively diminishing activities.
 - 20 assay trials with each point source
 - For each assay, determine the net counts in the peak ROIs of the given nuclide.
 - Check if Net Peak ROI Counts > L_C. If True, the peak is detected. If FALSE, the peak is not detected.
 - Of the 20 trials, what is the % of the trials for which Net peak Count > L_C?
Exploring the sensitivity limits of TGS – Some results

133Ba Point Source measurements
- 0.237 µCi – 356 keV – Net peak > L_C for 80% of trials
- 0.48 µCi – 356 keV – Net peak > L_C for 85% of trials
- 0.68 µCi – 356 keV – Net peak > L_C for 90% of trials
- 1.40 µCi – 356 keV – Net peak > L_C for 100% of trials

137Cs Point Source measurements
- 0.26 µCi – 662 keV – Net peak > L_C for 75% of trials
- 0.55 µCi – 662 keV – Net peak > L_C for 100% of trials
- 0.732 µCi – 662 keV – Net peak > L_C for 95% of trials
- 0.902 µCi – 662 keV – Net peak > L_C for 100% of trials

60Co Point Source measurements
- 0.25 µCi – 1332 keV – Net peak > L_C for 85% of trials
- 0.5 µCi – 1332 keV – Net peak > L_C for 100% of trials
- 0.793 µCi – 1332 keV – Net peak > L_C for 100% of trials
- 0.997 µCi – 1332 keV – Net peak > L_C for 100% of trials
More work is needed...

- Examine the emission images for the various activity level sources of a given nuclide (@ a given emission energy)
 - Does the emission image progressively become fuzzier? Does it maintain its voxel location as the activity decreases and the statistics become poorer?
 - Examine the statistical significance of the sensitivity measurements

- Determine the Detection Limit L_D, and the MDA.

\[
MDA = C(e) \left(\frac{k^2 + 2k \cdot \sqrt{B + \sigma_B^2}}{T \cdot \text{eff}(e)_{\text{Uniform}}} \right)
\]

\[
\text{eff}[e]_{\text{Uniform}} = \frac{\sum_{i,j} F_{ij}[e]}{N_{\text{voles}}}
\]

- $F_{ij}(e)$ are the attenuation corrected efficiency matrix elements for emission peak e. The efficiency is averaged over all voxels.

- There is a need to rigorously examine methods to estimate MDA for TGS
Canberra’s Can-TGS is proving to be a valuable R&D tool to conduct Physics studies, testing and qualification of software and hardware upgrades.

- Outcome of Physics studies will be reported at WM2015 and INMM 2015 conferences.

- Used for training /familiarize Canberra scientists and engineers on the TGS techniques.

- Could be potentially useful for collaborative R&D with Universities and National Laboratories.

- Available as a product for purchase by customers.