Spent Fuel Management in Germany

Holger Völzke
Federal Institute for Materials Research and Testing (BAM)
Berlin, Germany

Outline:
1. Use of Nuclear Energy
2. Interim Storage of Spent Nuclear Fuel
3. Considerations towards Disposal
4. Conclusions

1. Use of Nuclear Energy

Legal framework:
- Basic Law (Grundgesetz – GG)
- Atomic Energy Act (Atomgesetz - AtG)
- Radiation Protection Ordinance (StrlSchV)

Until 2011:
- 17 NPPs (11 PWR + 6 BWR) starting operation between 1975 and 1989 with 21.5 GWe

13th amendment of the Atomic Energy Act in August 2011:
- Immediate shut down of 8 NPPs
 - For 7 NPPs decommissioning and dismantling applications were filed by Oct. 2013
 - 9 NPPs (7 PWR + 2 BWR) starting operation between 1982 and 1989 with 12.7 GWe

Further reactor shut down dates:
- Dec 31, 2015, 2017, 2019 one reactor each
- Dec 31, 2021 and 2022 three reactors each

1. **Use of Nuclear Energy**

Cumulated Generated Spent Fuel

- **10,500 Mg Spent Nuclear Fuel**
- **6,700 Mg HAW from reprocessing (SF delivery ended by 30.06.2005)**

Final reactor shut down 2022

Accumulated spent fuel until 31.12.2013:
- ≈ 14,900 Mg HM (≈ 53,600 fuel assemblies)

Estimated amounts until final reactor shut-down (incl. cores):
- ≈ 2,300 Mg HM (≈ 6,400 fuel assemblies)

Total amount until 31.12.2022:
- ≈ 60,000 fuel assemblies
- ≈ 17,200 Mg HM

2. **Interim Storage of Spent Nuclear Fuel**

Atomic Energy Act (AtG)

Radiation Protection Ordinance (StrlSchV).

- The storage of nuclear fuel, including spent fuel and radioactive waste with significant contents of fissile material requires (if the proportion of certain uranium and plutonium isotopes exceed the limits specified § 2, para. 3 AtG) a **License under § 6 AtG**.

- § 6 AtG is not a plant license, but a so-called activity-related license.
- The license according to § 6 AtG is a bound decision which means that it is to be granted without discretion if the conditions stated in § 6, para. 2 AtG are fulfilled.

The **licensing authority** in this instance is the **Federal Office for Radiation Protection (BfS)**, while supervision is performed by the competent authority of the respective “Land” (Federal State).
2. Interim Storage of Spent Nuclear Fuel

The recommendations of the
- Reactor Safety Commission (RSK) est. 1958,
- Commission on Radiological Protection (SSK) est. 1974,
- Nuclear Waste Management Commission (ESK), est. on June 12, 2008,
play an important role with respect to licensing and supervisory procedures.

These independent expert commissions advise the Federal Environment Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) on issues relating to nuclear safety, radiation protection and the management of radioactive waste and spent fuel.

Storage Licenses issued by BfS contain all relevant safety evaluations to satisfy the protection goals
- safe enclosure
- shielding
- subcriticality
- heat dissipation
under operational and accidental conditions of the specific storage facility and define conditions and requirements for safe and secure operation.

Recent improvements of regulatory guidance were mainly initiated by
- The Report on the Radioactive Waste Disposal Safety Reference Levels of the Western European Nuclear Regulators Association (WENRA)
2. Interim Storage of Spent Nuclear Fuel

Dry Spent Fuel and HLW Storage Concept
(as defined by ESK guidelines and storage licenses)

- Accident safe dual purpose transport and storage casks
- Valid Type B(U) approval required before loading and during storage to guarantee permanent transportability
- Monolithic thick walled metal cask body
- Vacuum dried and helium filled (~ 800 hPa) cask interior ➞ inert conditions
- Permanently monitored bolted double barrier lid system equipped with metal seals
- Qualified repair concept in case of hypothetical lid failure
- Casks stored inside buildings
- Current storage licenses limited to 40 years

Photos: GNS

Interim Storage Facility at Isar NPP

H. Völzke
INMM 30th Spent Fuel Management Seminar
January 12-14, 2015, Arlington, VA, USA

2. Interim Storage of Spent Nuclear Fuel

Interim Storage North (VVER Fuel)

Central SF Storage Facilities (since 1982)

Jülich Research Center: 20 year storage license for AVR fuel expired June 30, 2013!

12 On-site Spent Fuel Storage Facilities (since 2002-2005)

At present ≈ 1,000 dual purpose casks of various types are in use for dry storage of SNF and HLW - at 16 storage sites (12 on-site)

Source: BfS

Transport and storage casks in the Transport Cask Storage Facility Gorleben (Photo: GNS)

H. Völzke
INMM 30th Spent Fuel Management Seminar
January 12-14, 2015, Arlington, VA, USA
3. Considerations towards Disposal

Spent Fuel Management Policy and Practices ruled by the Atomic Energy Act (AtG)

Initial concept:
- Centralized interim storage for up to 40 years (Ahaus, Gorleben)
- Pilot Conditioning Plant and deep geological disposal in a salt dome (Gorleben)
- Repository available until 2035

Since 1994 two options: Reprocessing or direct disposal

Since 2005 only direct disposal including subsequent interim storage remained
- 12 On-site interim storage facilities + Gorleben + Ahaus + AVR facility Jülich + VVER Interim Storage North

Since 2011 after the Fukushima event
- Phase out decision shutting down 8 NPPs immediately and the remaining 9 until the end of 2022

„Repository Site Selection Act“ entering into force on July 27, 2013
- Final site selection for a repository until 2031

3. Considerations towards Disposal

Change of disposal policy by new „Repository Site Selection Act“ entering into force on 27 July 2013.

- Site selection procedure will be prepared by a 33 member commission comprising all parts of society:
 - 1 chairman/chairwoman
 - 8 scientists
 - 8 representatives from social stakeholder organizations
 - 8 members from the German parliament (Bundestag)
 - 8 ministers representing the states ("Länder")

- The commission is to draw up and present proposals concerning i.a. security requirements and geological selection/exclusion criteria by the end of 2015.
- All parts of Germany are taken into consideration for site selection.
- Establishment of a Federal Institute for Nuclear Disposal in 2014/15 responsible for the site selection procedure, site proposals, exploration programs and evaluation criteria.
- Site selection for subsequent underground exploration until 2023
- Repository site selection to be completed by 2031

The final site selection is followed by licensing procedure and construction of the repository

H. Völzke
INMM 30th Spent Fuel Management Seminar
January 12-14, 2015, Arlington, VA, USA
3. Considerations towards Disposal

- For more than 20 years dry interim storage of spent fuel and HLW in approved dual purpose casks has demonstrated safe operation without any failures.

- Germany’s final phase-out decision 2011 and the complete restart of the repository siting procedure in 2013 result in new challenges for near-term cask availability and provoke the need for extended interim storage periods (40 years + X).

Path Forward to Extended Storage

Storage License
- Continuous aging management
- Periodic safety reviews, every 10 years

Extended Storage
- Additional safety assessments concerning degradation effects
- Basic R&D programs

Type B(U) Approval
- Safety inspections prior to transportation

Final Disposal

Transportation after Storage

Expiration of interim storage licenses
- 2002/2006
- 2012/2016
- 2022/2026

Final site selection
- 2031

Licensing procedure and repository construction
- 15 ... 20 years
- 2040/2045

Operation phase
- 30 years (50 casks per year)
- ≈ 2080

Site selection criteria and procedure
- 2016

Site selection for underground exploration
- 2019

Final site selection
- 2023

Licensing procedure and repository construction
- 2031

H. Völzke
INMM 30th Spent Fuel Management Seminar
January 12-14, 2015, Arlington, VA, USA
3. Considerations towards Disposal

Dual Purpose Casks During Interim Storage

- Initial package design approval for transportation
- Initial cask loading and storage
- Cask operation:
 - Storage
 - Handling
 - Maintenance
 - Aging Management
- Requirements / Outcomes
- Periodic safety inspections every 10 years
- Initial storage period: 40 years
- Extended storage period(s): 20, 40, 60, … (?) years

Initial package design approval
- Validity up to 10 years
- Design approval prolongation

Requirements / Outcomes

4. Conclusions

- For more than 20 years dry interim storage of spent fuel and HLW in approved dual purpose casks has demonstrated safe, secure, reliable, and flexible operation without any failures.
- Germany’s final phase-out decision 2011 and the complete restart of the repository siting procedure in 2013 result in new challenges for near-term cask availability and provoke the need for extended interim storage periods.
 - Extended storage periods of 80 years or even more are most likely
- Storage and transportation (after storage) are closely linked
 - Further improvement of the regulatory framework gives valuable support
 - Aging management issues should be addressed in a holistic approach
- Additional safety demonstrations and material data for the long-term concerning casks and inventory will be required in the future and should consider both storage and transportation needs.
- First R&D initiatives have already been started by BAM focussing on metal seals, polymers for neutron shielding, and elastomer seals.
4. Conclusions

- Other challenges comprise
 - Additional storage licenses (and transport design approvals) concerning
 - All specific fuel data (PWR and BWR) from remaining NPP operation
 - Storage of defect fuel assemblies
 - HLW return from UK to other on-site storage facilities instead of Gorleben
 - 60 – 80 dual purpose casks to be manufactured and loaded annually during the next decade
 - Decommissioning and dismantling of NPPs and finally separate operation of all storage facilities
 - Knowledge management during phase out and beyond nuclear power plant operation is a major issue
 - R&D needs concerning suitable cask designs for disposal taking into account various host rock formations, the existing cask fleet and potential fuel conditioning/repacking needs.