State of Play - Nuclear Energy Worldwide

• At the end of 2015, world’s 382 GW, 441 reactors, of nuclear capacity accounted for 11% of world’s electricity

• Some 80% of existing nuclear capacity is in OECD countries. Of that more than three-quarters is over 25 years old

• By contrast, around half of the capacity in non-OECD countries (excluding Russia) is less than 15 years old

• Currently, 67 GW of nuclear capacity under construction, 21 reactors in OECD countries and 46 in non-OECD countries
State of Play - Nuclear Energy Worldwide

- In 2015, WNA reports that 10 new reactors began commercial operations (+9497 MWe), while internationally eight reactors were shutdown for decommissioning (-4582 MWe)
- Four U.S. reactors (Crystal River 3, San Onofre 2&3, Vermont Yankee) were declared has permanently shutdown (-3479 MWe)
- Germany shutdown 1 reactor, Grefenrheingeld of 1345 MWe, Japan permanently closed 5 reactors: Genka 1, Mihama 1, Miahama 2, Shimane 1, and Tsuruga 1 representing a total of 2099, Sweden closed 1 reactor Oskarshamn of 648 MWe and Britain closed 1 reactor Wylfa of 490 MWe
- Total: 157 reactors have been permanently shutdown
State of Play - Nuclear Energy Worldwide

Locations of Power Reactor Sites Undergoing Decommissioning

The NRC’s Office of Nuclear Material Safety and Safeguards (NMSS) has project management responsibilities for 19 power reactors undergoing decommissioning.
Power Reactor Sites Undergoing Decommissioning

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal River – Unit 3</td>
<td>Crystal River, FL</td>
</tr>
<tr>
<td>Dresden – Unit 1</td>
<td>Dresden, IL</td>
</tr>
<tr>
<td>Fermi – Unit 1</td>
<td>Newport, MI</td>
</tr>
<tr>
<td>Humboldt Bay</td>
<td>Eureka, CA</td>
</tr>
<tr>
<td>Indian Point – Unit 1</td>
<td>Buchanan, NY</td>
</tr>
<tr>
<td>Kewaunee</td>
<td>Kewaunee, WI</td>
</tr>
<tr>
<td>LaCrosse Boiling Water Reactor</td>
<td>Genoa, WI</td>
</tr>
<tr>
<td>Millstone – Unit 1</td>
<td>Waterford, CT</td>
</tr>
<tr>
<td>Nuclear Ship Savannah</td>
<td>Baltimore, MD</td>
</tr>
<tr>
<td>Peach Bottom – Unit 1</td>
<td>Delta, PA</td>
</tr>
<tr>
<td>San Onofre – Unit 1</td>
<td>San Clemente, CA</td>
</tr>
<tr>
<td>San Onofre – Units 2 & 3</td>
<td>San Clemente, CA</td>
</tr>
<tr>
<td>Three Mile Island – Unit 2</td>
<td>Middletown, PA</td>
</tr>
<tr>
<td>General Electric Co. – ESADA Vallecitos</td>
<td>Sunol, CA</td>
</tr>
<tr>
<td>Experimental Superheat Reactor (EVESR)</td>
<td></td>
</tr>
<tr>
<td>General Electric Co. – Vallecitos Boiling</td>
<td>Sunol, CA</td>
</tr>
<tr>
<td>Water Reactor (VBWR)</td>
<td></td>
</tr>
<tr>
<td>Vermont Yankee</td>
<td>Vernon, VT</td>
</tr>
<tr>
<td>Zion – Units 1 & 2</td>
<td>Zion, IL</td>
</tr>
</tbody>
</table>
Retirements – Circle of Life

• Over the next 20 years and beyond, the IEA estimates that 150 GWs, or more than 200 nuclear plants, are expected to be retired, primed for or begin decommissioning.

• To date, over 157 nuclear power plants have been shutdown and/or are undergoing decommissioning worldwide (not including test reactors).

• Main drivers for plant retirements include:
 – 1. Units that have achieved their expected economic lifetime, 75%.
 – 2. Units that are closed following an accident, 5%.
 – 3. Units which are closed prematurely by political decision or due to regulatory reasons, 20%.
Age Profile of Operating Reactors

- Global nuclear reactor fleet average age is 27 years.
- OECD countries, reactor fleet is over 25 years.
- Half of the capacity in Non-OECD countries is less than 15 years old.
Age Profile of Operating Reactors

- Over 20+ years, there are 356 reactors
- Over 30+ years, there are 220 reactors
- Over 40+ years, there are 65 reactors

Figure 5. Number of operational reactors by age (as of 31 Dec. 2014).
Around 150 GW of nuclear capacity is retired thru 2040, equivalent to 38% of the current installed capacity or 44% of the existing operating world fleet.
Decommissioning Overview

• Bulk of worldwide retirements are in the mature markets, i.e. oldest fleets first, reflecting the age profile of their fleets, particularly the European Union (led by France, Germany and UK), Russia, Japan and United States.

• Rate of retirements picks up in the first half of the 2020s as reactors built in 1970s are taken off-line, and then again in the 2030s, particularly if life extensions in the U.S. are not re-extended for another 20 years.

• Average rate of retirements is about 5 GWs per year, compared with new additions of 15 per year.
• US nuclear fleet is the oldest in the world and averages 33 years
• 75 U.S. reactors have a 20 year life extension
Recent news reports indicate that first candidates for a second 20-year extension to 80 years are Dominion Resources Surry Plant in Virginia, Exelon’s Peach Bottom Plant in Pennsylvania and Duke Energy’s Oconee plant in South Carolina.
Recent news reports indicate that first candidates for a second 20-year extension to 80 years are Dominion Resources Surry Plant in Virginia, Exelon’s Peach Bottom Plant in Pennsylvania and Duke Energy’s Oconee plant in South Carolina.
Projected U.S. Nuclear Plant Capacity

Without additional new builds beyond those currently underway, total U.S. installed capacity begins to decline starting around 2027.
U.S. New Capacity Required Maintain Relative Fuel Share

Figure 2

New Nuclear Generating Capacity Needed If All Reactors Retire After 60 Years of Operation

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Electric Generation (bkWh)</th>
<th>Nuclear Capacity (GW)</th>
<th>Nuclear Generation (bkWh)</th>
<th>Nuclear Fuel Share</th>
<th>New Generation Needed to Meet Fuel Share (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>4,622.3</td>
<td>104.0</td>
<td>820.0</td>
<td>17.7%</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>4,815.1</td>
<td>100.0</td>
<td>788.0</td>
<td>16.4%</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>5,004.3</td>
<td>72.4</td>
<td>570.4</td>
<td>11.4%</td>
<td>54.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>5,219.7</td>
<td>57.5</td>
<td>453.2</td>
<td>8.7%</td>
<td>74.9</td>
</tr>
</tbody>
</table>

Data Source: Energy Information Administration, Annual Energy Outlook 2014
EU Nuclear Capacity Outlook

Figure 11.9 EU nuclear power capacity in the New Policies Scenario and retirement profiles under different lifetime extension assumptions

- EU nuclear fleet has a current average age of 30 years, all most half is expected to be retired by 2040
Decommissioning Costs

• Decommissioning cost estimates vary
• Based on U.S. data, decommissioning cost estimates are in the range of $750 million to $1 billion per 1000 megawatt plant
• Decommissioning options include:
 - Immediate dismantling is the prompt removal and processing of all radioactive material
 - Deferred dismantling (Safe Store) is the process of allowing radioactive decay to occur before starting the dismantling process
Decommissioning Costs as a function of time from shutdown

Figure 8: Decommissioning a nuclear power plant takes many years and costs vary widely. The highest costs will be incurred during the initial shutdown and final decommissioning and demolition. Any intervening period of standing by will be less expensive. These factors may influence decisions on how rapidly decommissioning will take place. Source United States Department of Energy (2010)
Investor-Owned Decommissioning Per Plant Cost Estimates

Investor-Owned Utilities

<table>
<thead>
<tr>
<th>Company</th>
<th>Lic Exp [Aug Yr]</th>
<th>MW Nuclear Capacity</th>
<th>Decommissioning Cost Estimate ($mm)</th>
<th>Feed Balance ($mm)</th>
<th>Pro Forma Feed Shortfall ($mm)</th>
<th>Annual Cost ($mm)</th>
<th>Current Amort</th>
<th>Pro Forma Amort</th>
<th>Shortfall Annu Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Electric Power Company</td>
<td>2034-2037 [22]</td>
<td>2.069</td>
<td>$1,375 $665 $1,651 $1,932 $281 $10 $313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constellation Energy Nuclear Group</td>
<td>2029-2046 [22]</td>
<td>3.853</td>
<td>$3,677 $964 $3,677 $1,570 $2,107 $0 $96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domains Resources</td>
<td>2032-2045 [22]</td>
<td>6.553</td>
<td>$4,161 $635 $5,229 $3,903 $1,326 $2 $60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTE Energy Company</td>
<td>2025 [11]</td>
<td>1.085</td>
<td>$1,600 $1,475 $1,600 $1,172 $428 $13 $39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Future Holdings Corporation</td>
<td>2030-2033 [10]</td>
<td>2.406</td>
<td>$1,319 $548 $1,920 $791 $1,129 $16 $63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FirstEnergy Corporation</td>
<td>2017-2047 [15]</td>
<td>4,697</td>
<td>$3,368 $717 $3,748 $2,209 $1,539 $5 $103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Mountain Power Corporation</td>
<td>2015 [21]</td>
<td>321</td>
<td>$11 $324 $17 $0 $0 $0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NextEnergy</td>
<td>2030-2043 [14]</td>
<td>5,552</td>
<td>$4,500 $1,011 $4,500 $4,308 $2,085 $0 $10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prairie WestCapital Corporation</td>
<td>2015-2047 [33]</td>
<td>1,146</td>
<td>$701 $612 $915 $642 $223 $17 $8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPL Corporation</td>
<td>2012-2044 [29]</td>
<td>2,358</td>
<td>$1,245 $549 $1,810 $584 $96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Service Company of New Mexico</td>
<td>2015-2045 [33]</td>
<td>402</td>
<td>$246 $611 $221 $223 $5 $3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Service Enterprise Group</td>
<td>2033-2046 [20]</td>
<td>3,622</td>
<td>$2,180 $602 $2,890 $1,701 $1,189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCANA Corporation</td>
<td>2024 [29]</td>
<td>644</td>
<td>$697 $1,082 $697 $101 $596 $3 $21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Company</td>
<td>2034-2049 [27]</td>
<td>3,667</td>
<td>$2,817 $768 $2,926 $1,480</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westar Energy</td>
<td>2015 [31]</td>
<td>545</td>
<td>$206 $543 $435 $176 $259 $3 $8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xcel Energy</td>
<td>2030-2034 [19]</td>
<td>1,584</td>
<td>$2,884 $1,809 $2,884 $1,627 $1,257 $2 $16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investor-Owned Utilities Totals: $83,351 $60,558 $738 $74,034 $59,475 $23,819 $315 $1,314
Table 11.2 - Cumulative global investment and associated costs in nuclear power in the New Policies Scenario, 2014-2040 ($2013 billion)

<table>
<thead>
<tr>
<th>Country</th>
<th>Investment in nuclear plants*</th>
<th>Associated costs</th>
<th>Total capacity additions (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fuel cycle</td>
<td>Decommissioning</td>
</tr>
<tr>
<td>China</td>
<td>345</td>
<td>191</td>
<td>-</td>
</tr>
<tr>
<td>European Union</td>
<td>301</td>
<td>220</td>
<td>51</td>
</tr>
<tr>
<td>United States</td>
<td>247</td>
<td>236</td>
<td>15</td>
</tr>
<tr>
<td>Korea</td>
<td>103</td>
<td>78</td>
<td>1</td>
</tr>
<tr>
<td>India</td>
<td>96</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>Japan</td>
<td>37</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>Rest of world</td>
<td>406</td>
<td>161</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>1 533</td>
<td>977</td>
<td>104</td>
</tr>
</tbody>
</table>

* Investment in new plants and for uprates and refurbishments for life extensions at existing ones.
Order of Magnitude Estimates

Decommissioning Costs thru 2040

<table>
<thead>
<tr>
<th>Decommission Market Segment</th>
<th>Estimate of Decommissioning Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>$30 billion</td>
</tr>
<tr>
<td>France</td>
<td>$25 billion</td>
</tr>
<tr>
<td>Russia</td>
<td>$15 billion</td>
</tr>
<tr>
<td>U.K.</td>
<td>$20 billion</td>
</tr>
<tr>
<td>Germany</td>
<td>$30 billion</td>
</tr>
<tr>
<td>Japan</td>
<td>$30 billion</td>
</tr>
<tr>
<td>Total</td>
<td>$150 billion</td>
</tr>
</tbody>
</table>

- Decommissioning market size is in the range of $100-$150 billion thru 2040
- Decommissioning costs are in the order of 10 percent of the investment in new nuclear capacity over the period
Summary

• Decommissioning beginning in the mid-2020s will become an increasing important segment of the nuclear energy industry

• Existing nuclear plant fleet is approaching “mid-life” and future nuclear plant retirements are “around-the-corner” therefore are the logical consequence of plants reaching their economic life and design expectancies

• Nuclear plant decommissioning costs vary significantly and depend on decommissioning approach, in-country requirements and regulation and industry practices

• Nuclear plant decommissionings are expected to be concentrated in the oldest fleets, led by the U.S. and EU, as well as those underway in Germany and those that may take place in Japan as a resulted of the Fukushima accident