ENSA (Grupo SEPI)

Ensa Solutions for Interim Dry Spent Fuel Storage & Transportation

INMM 31st Spent Fuel Management Seminar
January 12, 2016, Washington DC, USA

Alejandro Palacio
Design & Licensing Dpt.
Spent Fuel Cask
Outline

• Spain
 o Actual Spent Fuel Scenario
 o Spanish Spent Fuel Strategy for the near Future
 o Ensa’s Technological Solution Approach: the ENUN casks series

• China
 o The ENUN 24P project

• Upcoming Challenges

• Conclusions
Actual Spent Fuel Scenario

Nuclear Spent Fuel Inventory: around 5,000 tU in Storage (FA)

- Most of them at NPP pools (*Wet Storage, Racks*)
- 3 ISFSI under operation (*Dry Storage, Casks*)
 - Trillo NPP
 - José Cabrera NPP
 - Ascó NPP
- 1 ISFSI under construction (*Dry Storage, Casks*)
 - Sta. Mª de Garoña NPP
- 1 ISFSI under design (*Dry Storage, Casks*)
 - Almaraz NPP (units I and II)
- 1 Centralized Storage Facility in process (*Dry Storage, Vault*)
 - ATC (Villar de Cañas)
Actual Spent Fuel Scenario

- **Under Construction ISFSI, Sta. Mª Garoña NPP**
- **Under Design ISFSI, Almaraz I&II NPPs**
- **In process Centralized Storage Facility, ATC (Villar de Cañas)**
- **Operating ISFSI, Trillo NPP**
- **Operating ISFSI, Ascó I&II NPPs**
- **Operating ISFSI, José Cabrera NPP**
Estimated total amount of nuclear spent fuel waste, after 40 years of all NPP operation:

6,700 tU (20,000 Fuel Assemblies)
Spanish Spent Fuel Strategy for the near Future

- Spent fuel will remain temporarily dry stored at the ISFSIs of the NPPs
- Later on, all casks will be transported to the ATC (Centralized Interim Storage Facility)
- Once in the ATC:
 1) Temporary storage in the ATC cask storage building;
 2) Transfer of fuel (hot cell) from the cask to the canisters;
 3) Interim storage using welded canisters (initially licensed for 60 years but designed for 100);

ATC Technology: Vault system for SF and HLW (Vitrified)
Spanish Spent Fuel Strategy for the near Future

Restrictions imposed by different stakeholders:

- **Spanish Government:**
 - 6th General Radioactive Waste Plan (2006) gives priority to centralized interim storage (ATC=Vault system);
 - search for a global cask solution
 - a cask concept designed for the Spanish strategy: the ATC (a bolted dual-purpose cask);
 - lower cost;
 - simplicity for transport and transfer (from cask to vault);
 - customized for each NPP requirements;

- **Trillo NPP:** current Ensa-DPT casks cannot cover actual fuel parameters. Need for an enhanced cask solution (high burnup);

- **Almaraz NPP:** need a ISFSI and a standard cask solution;

- **Sta. Mª de Garoña:** need a ISFSI and a specific cask solution;

- **Cofrentes NPP:** needs a specific cask solution;

- **All NPPs:** provide a solution for damaged fuel;
Ensa’s Technological Solution Approach

The new Dual-Purpose ENUN Cask Series
Ensa’s Technological Solution Approach

ENUN 52B: Sta. Mª de Garoña NPP

- Designed to cover **Sta. María de Garoña** NPP fuel parameters (initially GE-6 and GE-7);

- Light weight and reduced dimensions because of NPP limitations:
 - Weight: 70 tons;
 - Outer diameter:
 - Cask 2.2 m;
 - Transport configuration: 3.1 m

- Licensed by ENSA in Spain:
 - Storage -> 2014
 - Transport (low burnup) -> 2015

- Current book order:
 - 5 manufactured casks + ancillary equipment;
 - Expected loading campaigns: early 2017;
Ensa’s Technological Solution Approach

ENUN 52B: Sta. Mª de Garoña NPP

Cask body:
- Monolithic carbon steel

Basket:
- ‘Egg-crate’ structure, stainless steel + aluminum + MMC

Closure system:
- 2 bolted lids

Ancillary equipment:
- Transfer crane, lifting yokes, draining system, etc.
Ensa’s Technological Solution Approach

ENUN 32P: Trillo and Almaraz NPPs

- Designed to cover all **Trillo, Almaraz, Ascó I & II** and **Vandellós II** NPPs fuel parameters (KWU 16x16 and W 17x17);

- Optimized respect to former Ensa-DPT design (90’s)
 - Lowering the cost;
 - Increasing capacity, burnup, heat load, fuel types and NFH;
 - Enhanced technology (materials, burnup credit, etc.);

- **Licensed by ENSA in Spain:**
 - Storage -> 2015
 - Transport (low burnup) -> Early 2016
 - Transport (high burnup) -> 2017

- Current book order:
 - 10 manufactured casks + ancillary equipment;
 - Expected loading campaigns: early 2018 both Trillo and Almaraz NPPs;
Ensa’s Technological Solution Approach

ENUN 32P: Trillo and Almaraz NPPs

- **Cask body:** monolithic carbon steel
- **Transport impact limiters:** Poliurethane foam, Aluminium honeycomb
- **Basket:** ‘Egg-crate’ structure, Stainless Steel + Aluminum + MMC

Closure system:
2 bolted lids
Ensa’s Technological Solution Approach

ENUN 32P: Trillo and Almaraz NPPs

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial enrichment (% wt. U-235)</td>
<td>4.90 %</td>
</tr>
<tr>
<td>Burnup (MWd/MtU)</td>
<td>65,000</td>
</tr>
<tr>
<td>Minimum cooling time (years)</td>
<td></td>
</tr>
<tr>
<td>a) Uniform loading</td>
<td>16</td>
</tr>
<tr>
<td>b) Zonal loading</td>
<td></td>
</tr>
<tr>
<td>(Region 1, periphery)</td>
<td>21</td>
</tr>
<tr>
<td>(Region 2, center)</td>
<td>9</td>
</tr>
<tr>
<td>Maximum thermal load (kW)</td>
<td>36.2</td>
</tr>
</tbody>
</table>

Uniform loading: 32 FA

Zonal loading: 20 + 12 FA

28 FA + 4 NFH

NFH: Control rods, BPRA, WABA, etc.
P.R. of China: The ENUN 24P Project

- **Purpose:** transport spent fuel from 2 NPPs to Lanzhou storage facility

- **PWR plants:**
 - Ling Ao
 - Daya Bay

- **Current solution:**
 - STC-26

- **User selects a new enhanced solution, the ENUN 24P:**
 - Improved design and materials;
 - Transport of high burnup fuel;
 - Reduced outer dimensions;
 - Optimized cost;
P.R. of China: The ENUN 24P Project

- Designed to cover Ling Ao and Daya Bay NPPs fuel parameters (AFA 2G, AFA 3G and AFA 3GAA);

- Technical challenge:
 - Fuel parameters: 57,000 MWd/tU; 5 years cooling;
 - No burnup credit allowed;
 - Outer package dimensions limited to 3.3 m;
 - Customized solution in tight schedule: < 3 years;

- Need to be licensed in Spain and China:
 - Transport (high burnup) -> end of 2016 (currently under regulatory body evaluation);
 - Storage -> 2017;

- Current book order:
 - 1 manufactured casks + ancillary equipment + loading support;
 - Expected loading campaigns: beginning 2017;
Upcoming Challenges

- **SAR amendment of ENUN P casks for transport of high burnup spent fuel (> 45,000 MWd/tU):**
 - Comply with requirements from NRC ISG-11, Rev. 3 and IAEA SSR-6;
 - Agree of methodologies with nuclear authorities;
 - Collaboration with US National Labs in transportation test program using an ENUN 32P full scale cask;

- **SAR and TSAR amendment of all ENUN dual-purpose casks to load damaged fuel:**
 - Design of specific can for damaged fuel: customized to each ENUN cask;
 - Compatible with ATC canisters;

- **Enhance the design of the ENUN 52B cask to load all spent fuel from Sta. Mª de Garoña NPP (Spain):**
 - Current: GE-6, GE-7; Target: GE-4; GE-5; GE-8; GE-10, GE-11; GE-14, etc.

Continue developing components for the safe management of the nuclear spent fuel worldwide, offering enhanced and customized technical solutions,
Conclusions

✓ In Spain, most of the SF is actually stored in pools at NPPs;
✓ Current dry storage systems do not cover all existing spent fuel conditions: enhanced cask designs and technical solutions are needed;
✓ Dry storage is required to cover the need of emptying the pools and transport the spent fuel, until the ATC is ready;
✓ High burnup fuel transport requirements need to be addressed;
✓ ENUN cask series successfully cover the needs for the Spanish spent fuel scenario;
✓ Ensa is currently doing a great effort to customize the ENUN 24P, for the safe transport of high burnup spent fuel in China;
✓ Ensa is continuously supporting and being involved on different international programs to find optimal solutions for the spent fuel management strategy;
Thanks for your attention!