Research for Spent Fuel Storage & Transportation: What Have We Learned and What is Next?

Sylvia Saltzstein, Geoff Freeze: Sandia National Laboratories
Brady Hanson: Pacific Northwest National Laboratories
Ned Larson: Department of Energy: Nuclear Energy

2020 INMM Spent Fuel Management Seminar
January 20, 2020
Alexandria, VA
Planning Long-Term

The DOE R&D is driven by peer-reviewed Gap Analyses

2017 Five-Year Delta report
• Updated the 2014 Gap Analysis
• Covers R&D results through FY17

FY2019 Assessment report
• Adds R&D results from FY18 & 19
• Main priorities remain the same. Some rankings have changed based on recent R&D results

Current R&D Priorities

Priority 1
• Thermal Profiles
• Stress Profiles
• Welded Canister – Atmospheric Corrosion (Priority increased)

Priority 2
• Drying Issues

Priority 3
• External Monitoring
• Cladding – H₂ Effects
• Consequence of Canister Failure
• Fuel Transfer Options
The S&T R&D Projects Combine to Develop the Technical Basis for Safe Storage and Transport of Spent Nuclear Fuel

Sister Rod Mechanical Testing Data

- We have fuel in hot cells. (ORNL & PNNL)
- We have begun destructive analysis.
- We completed non-destructive tests.

Thermal Behavior

- We have thermal models.
- We are getting new thermal data from the Demo.
- We are working to ID conservatisms & develop more realistic assumptions.

Provides Knowledge about Spent Fuel and Canister Integrity

Spent Fuel Triathlon: Quantification of Normal Transport Shocks & Vibrations
DOE/EPRI High Burnup Project

Goal: To provide confirmatory data for models, future SNF dry storage cask designs, and to support license renewals and new licenses for ISFSIs.

Has provided vital data for the technical basis for the safe storage and transport of spent nuclear fuel.

• Cask monitored to determine thermal and environmental conditions experienced by the fuel during drying and storage.
 – Fuel cladding temperature
 • indirectly, via 63 thermocouples inside the cask
 – Cavity gas composition
 • via three gas samples after drying and filling with He backfill gas

• Provided 25 sibling pins for mechanical testing
High Burnup Spent Fuel Data Project Participants

- A contract was awarded to EPRI on April 16, 2013

- National Labs are performing the technical evaluations of the data

[List of logos for participants]
Temperature Drives Everything!
How do we get accurate thermal data and analysis?

Sister Rod Mechanical Testing Data
- We have fuel in hot cells. (ORNL & PNNL)
- We completed non-destructive tests.
- We have begun destructive analysis.

Thermal Behavior
- We have thermal models.
- We are getting new thermal data from the Demo.
- We are working to ID conservatisms & develop more realistic assumptions.

Provides Knowledge about Spent Fuel and Canister Integrity

Spent Fuel Triathlon:
- Quantification of Normal Transport Shocks & Vibrations
Steady state PCTs from all models and measurements significantly lower than the design licensing basis:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FSAR</th>
<th>LAR</th>
<th>Best-Estimate</th>
<th>HBU Cask Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT (model vs data)</td>
<td>348°C</td>
<td>318°C</td>
<td>254-288°C</td>
<td>229°C</td>
</tr>
<tr>
<td>Heat Loadouts</td>
<td>36.96kW</td>
<td>32.934kW</td>
<td>30.456kW</td>
<td>30.456kW</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>100°F</td>
<td>93.5°F</td>
<td>75°F</td>
<td>75°F</td>
</tr>
<tr>
<td>Design Specifics</td>
<td>Gaps</td>
<td>Gaps</td>
<td>Gaps</td>
<td>No Gaps?</td>
</tr>
</tbody>
</table>

FSAR: Final Safety Analysis Report
LAR: License Amendment Report (submitted after refinement of model inputs to FSAR)

The aluminum basket expands and closes the gaps, but we don’t know by how much.

Current Work is focused on identifying biases and conservatisms that overestimate thermal environment.
Thermal Profiles:
Obtaining Temperature Data in Controlled Environments for More Model Validation

• Collect data to validate models
 • Simplified geometry based on real-world systems
• Wide range of parameters
 • Decay heat and internal pressures
 • Different storage configurations (above and below ground)
• Better confidence in predictive modeling to understand fuel behavior
• EPRI Thermal PIRT

Built a **Vertical Convective System**

FY19-20 Focus

Now Testing a **Horizontal Convective System**

SNL: Durbin, Lindgrin, Pulido
The Big Picture: Why is Predicting Thermal Conditions Important?

- Lower temperatures better for cladding.
- Lower temperatures are better for transferring from pool to dry storage.
- Lower temperatures are worse for CISCC.
- Lower temperatures reduce the time before we can transport a package.
- Lower temperatures allow more repository host rock possibilities, reduce spacing within a repository, and time before the repository can be closed.

Bonano, Kalinina, Swift, The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America, MRS Advances, 2018
How Strong is our Fuel?

SISTER ROD MECHANICAL TESTING DATA

- We have fuel in hot cells. (ORNL & PNNL)
- We completed non-destructive tests.
- We have begun destructive analysis.

THERMAL BEHAVIOR

- We have thermal models.
- We are getting new thermal data from the Demo.
- We are working to ID conservatisms & develop more realistic assumptions.

PROVIDES KNOWLEDGE ABOUT SPENT FUEL AND CANISTER INTEGRITY

SPENT FUEL TRIATHLON: QUANTIFICATION OF NORMAL TRANSPORT SHOCKS & VIBRATIONS

- Near-term transportation and storage
- Transportation scenarios
- R&D activities
- Regulatory framework
- Code and policy development
- Long-term storage
- Transport with period storage
- Radiological and operational aspects
- Integration of components
- Reducing cost and risk
Twenty-five Fuel Rods Similar to those in the Demo Cask are being tested for mechanical properties

- 25 fuel rods from representative fuel assemblies were selected
- These rods will form the baseline for pre-storage characterization
- Rods or segments have been heated to simulate drying conditions to predict material properties post-drying
- ORNL is testing fueled cladding and PNNL is testing defueled cladding
- ANL is performing Ring Compression Tests

![NAC LWT basket with 10 Sister Rods in PNNL hot cell](image)
A Peer-Reviewed Test Plan was Developed for the 25 Rods

High-Burnup Spent Fuel Rod Phase 1 Test Plan Visualization

We start with 25 rods. Both labs will perform similar tests, but ORNL will test fueled rods and PNNL will test defueled rods. ANL will perform RCT and RHT on rod segments.

HEAT TREATMENT OF SEGMENTS OR WHOLE RODS TO 400°C

- 3 Rods: 1 M5®, 1 Zirlo®, 1 Zirc-4
- Cool at ±5°C/hr to 100°C

6 rods are heat treated and 4 are not; all rods undergo the same series of initial tests at room temperature.

INITIAL TESTS AT ROOM TEMPERATURE

- Rod Internal Pressure
- Gas Communication
- Optical Microscopy
- Hydrogen Content
- ASTM Micro-hardness
- RCT & RHT Test Samples (Send to ANL)
 - RCT Tests @ 20°C to 200°C
 - RHT @ 400°C PCT

Rod segments are then tested at room temperature and 200°C².

TEST AT 200°C³

- ASTM Axial Tensile
- ASTM Burst
- ASTM 4-point Bend
- Fueled RCT @ ORNL

1) ORNL may use multiple M5® or Zirlo® rods as well as Low-Tin Zirc-4 rod segments for testing.
2) Tests will be conducted on samples from multiple axial regions of each fuel rod.
3) Not all tests may be able to be performed at 200°C.

ROOM TEMPERATURE

- ASTM Axial Tensile
- ASTM Burst
- ASTM 4-point Bend
- Fueled RCT @ ORNL
- CIRFT @ ORNL
- Particle Release @ ORNL

- Deviations from this test plan will be based on continuous learning and approved before execution.
- As test results are obtained, our community reviews the data, and DOE determines a path forward.
Demo Sibling Rod End of Life Rod Internal Pressures are Consistent with other Data and are Generally less than 4 MPa

Initial He Fill Pressures: 1.7–3.45 MPa

Legacy Data Average

Legacy Data Average + 3σ

EOL PWR RIP at 25°C (MPa)

Rod Average Burnup (GWd/MTU)

Preliminary

• Legacy Data
• KAERI Data
• ORNL Sister Rods
• PNNL Sister Rods
• PNNL FRAPCON
• PNNL FRAPCON IFBA
Modeled Hoop Stress from Rod Internal Pressure indicate Hoop Stress is less than 53MPa.

Table 1. Maximum Hoop Stress (MPa) 400°C Peak Temperature

<table>
<thead>
<tr>
<th>Profile</th>
<th>Vacuum (0.004 atm)</th>
<th>Medium Flow (1 atm)</th>
<th>High Flow (6.8 atm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10x10</td>
<td>40.0</td>
<td>43.8</td>
<td>41.7</td>
</tr>
<tr>
<td>17x17</td>
<td>49.9</td>
<td>53.4</td>
<td>50.5</td>
</tr>
<tr>
<td>17x17 IFBA</td>
<td>84.4</td>
<td>88.1</td>
<td>86.3</td>
</tr>
</tbody>
</table>

Table 2. End of Life Rod Internal Pressure (MPa) 400°C Peak Temperature

<table>
<thead>
<tr>
<th>Profile</th>
<th>Vacuum (0.004 atm)</th>
<th>Medium Flow (1 atm)</th>
<th>High Flow (6.8 atm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10x10</td>
<td>5.4</td>
<td>6.1</td>
<td>6.4</td>
</tr>
<tr>
<td>17x17</td>
<td>6.2</td>
<td>6.8</td>
<td>7.0</td>
</tr>
<tr>
<td>17x17 IFBA</td>
<td>10.6</td>
<td>11.1</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Table 3. Maximum Plenum Temperature (all fuel types)

<table>
<thead>
<tr>
<th>Profile</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum (0.004 atm)</td>
<td>264</td>
</tr>
<tr>
<td>Medium (1 atm)</td>
<td>348</td>
</tr>
<tr>
<td>High (6.8 atm)</td>
<td>397</td>
</tr>
</tbody>
</table>

Hoop Stress <90MPa will result in Few Radial Hydrides and Ductile Cladding above Room Temperature.

Apparent threshold for reduced ductility with radial hydride treatment at >90MPa Hoop Stress.

As long as hoop stress is below 90MPa, it remains ductile until room temperature. The fuel rods in the Research Project Cask will have a hoop stress <53 MPa.

"Data collected during the past five years suggest that radial-hydride-induced embrittlement may not occur in standard PWR fuel-rod cladding because

- EOL RIP values (< 5 MPa at 25° C),
- PCTs (< 400° C),
- average gas temperatures (< 400° C),
- average assembly discharge burnups (< 50 GWd/MTU)

are all much lower than previously anticipated."

What are the Shocks and Vibrations the Fuel Sees in its Lifetime?

Sister Rod Mechanical Testing Data
- We have fuel in hot cells. (ORNL & PNNL)
- We have begun destructive analysis.

Provides Knowledge about Spent Fuel and Canister Integrity

Spent Fuel Triathlon: Quantification of Normal Transport Shocks & Vibrations

Thermal Behavior
- We have thermal models.
- We are getting new thermal data from the Demo.
- We are working to ID conservatism & develop more realistic assumptions.

We completed non-destructive tests.
Transportation Triathlon collected Strain and Acceleration Data on Surrogate Fuel over Rail, Truck, and Ship.

- Cask handling tests at ENSA, Santander/Spain
- Heavy-haul truck tests in Northern Spain (245 mi/394 km)
- Barge transport from Spain to Belgium (929 mi/1,495 km)
- Ocean ship transport from Belgium to Baltimore (4,290 mi/6,904 km)
- Rail shipment from Baltimore to TTCI (Rail 1, 1,950 mi/3,138 km)
- Testing at TTCI
- Rail shipment from TTCI to Baltimore (Rail 2, 1,125 mi/1,811 km)
- Return ocean transport from Baltimore to Spain (not recorded)

Total distance traveled with data acquisition: 8,539 mi (13,742 km)
Normal Conditions of Transport Included Truck, Ship and Rail

16-axle heavy haul truck transport through Spain

Barge and ocean ship transport

Rail transport and testing in the US – Kasgro 12-axle railcar
Strain and Acceleration was Measured on Surrogate Fuel, Assembly Hardware, Basket, Cask, Cradle, and Transportation Platform

40 accelerometers, 37 strain gauges
Maximum Strains and Accelerations from all Transportation Tests were well below the cladding measured Yield Stress.

Measured yield stress levels for irradiated SNF cladding is ~ 7000 – 9000 με
Fatigue Analysis

Strain data collected during the multimodal transportation test were used to perform fatigue analysis on the fuel cladding. The ASTM Standard E1049 rainflow counting method was used to count the number of strain cycles in the data. Accumulated fatigue damage was calculated according to Miner’s Rule.

Klymyshyn et al, Structural Dynamic Analysis of Spent Nuclear Fuel, SWFD-SFWST-M2SF-19PN01202014; PNNL-29150

- Damage fraction of 1.0 indicates fatigue failure. Accumulated damage in all cases is below 1E-10
- This calculation estimates it would take 10 billion cross-country (2,000-mile) trips to challenge the fatigue strength of irradiated fuel cladding.
Temperature, Fuel Integrity, and Stress Profile all Effect Canister Integrity

Sister Rod Mechanical Testing Data
- We have fuel in hot cells. (ORNL & PNNL)
- We have begun destructive analysis.

Thermal Behavior
- We have thermal models.
- We are getting new thermal data from the Demo.
- We are working to ID conservatisms & develop more realistic assumptions.

Provides Knowledge about Spent Fuel and Canister Integrity

Spent Fuel Triathlon: Quantification of Normal Transport Shocks & Vibrations

23
Canister Stress Corrosion Cracking: Goal: When, Where, and How to Mitigate?

- **GOAL:** Develop an Integrated Mechanistic/Probabilistic Model for Canister SCC to improve ability to predict timing and location of potential canister penetration by SCC cracks.

- We need to understand the basic science to know how to effectively mitigate stress corrosion cracking.

Additional Collaborations:

- Corrosion testing in support of SCC mitigation and repair studies:
 - PNNL: friction stir weld and cold spray samples
 - Purdue (NEUP): cold spray samples
Collaborative effort to understand:

1. How do canister surface depositions evolve over time?
2. What is the relationship between surface environment (temperature, humidity and salt load/distribution) and damage (pitting/SCC) distributions/rates?
3. How does the microstructure and mechanical environment (residual stress intensity and depth profile) of the canister contribute to corrosion distributions and rates?

- What is the primary factor that governs pit morphology?
- Is pit-crack transition influenced by environment and pit morphology?
- Is crack growth rate a function of the environment?

What is the potential impact of a through-wall stress corrosion crack (SCC)?

- Relatively low availability of mobile radionuclides under normal storage and transportation

- Significant amount of literature on aerosol transport through idealized leak paths
 - Primarily for moderate pressure differentials

- Information for combined analysis needed from following topics
 - Available source term inside canister
 - Characteristics of SCC
 - Flow and particle transport through prototypic SCC’s
Test Apparatus to Collect Data on the Potential Impact of a Through-wall Stress Corrosion Crack (SCC).
The S&T R&D Projects Combine to Develop the Technical Basis for Safe Storage and Transport of Spent Nuclear Fuel

SISTER ROD MECHANICAL TESTING DATA

- We have fuel in hot cells. (ORNL & PNNL)
- We completed non-destructive tests.
- Have begun destructive analysis.

- Sister Rod Mechanical Testing Data

THERMAL BEHAVIOR

- We have thermal data from the Demo.
- We have thermal models.
- We are identifying conservatisms & biases to develop more realistic assumptions.

SPENT FUEL TRIATHLON: QUANTIFICATION OF NORMAL TRANSPORT SHOCKS & VIBRATIONS

- Provides knowledge about spent fuel and canister integrity
What is Next?

SFWST program has the necessary hardware and funding to continue the R&D as defined in the Gap Analysis reports

Focus for the next 2 years:

Gap Priority 1: Temperature drives everything.
 • Continue thermal modeling validation work. Continue the Thermal PIRT.
 • Can we get more temperature data from in-service canisters?

Gap Priority 1: Need to know how to mitigate CISCC effectively.
 • Continue to learn about CISCC time frames, and regions of concern.
 • Can we get more dust samples?

Gap Priority 1: A transportation campaign will happen and we need to know safety margin.
 • Obtain data on fuel accelerations during handling and pinch load conditions.

Gap Priority 2: We need to know how much water remains in a cask after drying.
 • Testing and sampling to better understand impacts, if any, of residual water
 • Can we get gas samples?

Gap Priority 3: Continue the sister rod destructive testing to get mechanical properties.

Investigate ATF
Why We are Here:
We must have the Technical Flexibility to Support any Policy Decision

We have three options
1. Repackage all the fuel before going into a repository
2. Dispose of it as-is.
3. Do nothing
References

Hanson 2019a. Hanson, B., Alsaed, H., “Gap Analysis to Support Extended Storage of Used Nuclear Fuel: Five Year Delta”,

Questions?