

Position Statement of the National Lymphedema Network

September 2025

Lymphedema Diagnosis and Treatment

General Considerations

Lymphedema is an abnormal accumulation of macromolecule-rich fluid (e.g., protein, cells, and cell fragments) in the interstitial environment, manifesting in the extremities, trunk, and the head and neck.^{1,2} This chronic disease, also referred to as chronic edema,³ results from dysfunction in the lymphatic system (mechanical insufficiency) due to malformations or extensive damage to lymphatic structures.^{1,2,4} While the primary symptom is swelling, lymphedema is associated with other morbidities, either coexisting with or independent of swelling. Chronic inflammation caused by excessive macromolecules in the interstitial environment can lead to adiposity and fibrosis. 1,5 Additional morbidities include reduced health-related quality of life, lowered self-esteem, recurrent infections (cellulitis), altered clothing fit, musculoskeletal conditions (e.g., limited range of motion, weakness, pain), neurologic disturbances (e.g., sensation changes), skin changes, discomfort, heaviness, depression, diminished activities of daily living, difficulty returning to work, and 2,6,15,16,7-1417 although rare, chronic lymphedema can progress to cutaneous malignancies or angiosarcomas, with mortality rates of 53.9% for Stewart-Treves syndrome and 10.5% for other malignancies. 18 Common comorbidities include obesity, diabetes, congestive heart failure, neurological disorders, and peripheral artery disease. 19

Lymphedema is broadly categorized into two etiologies: primary and secondary. Estimating prevalence and incidence is challenging due to a lack of universal diagnostic criteria, limited global epidemiological studies and diagnostic underreporting by both patients and healthcare providers. 2021 Worldwide, lymphedema affects approximately 140–300 million individuals, 2,2022 with an estimated 3-10 million cases in the United States.²

Primary Lymphedema

Primary lymphedema is characterized by congenital malformations of the lymphatic system (e.g., vessel or nodal aplasia, hypoplasia, or fibrosis) that lead to lymphedematous swelling.

Classification is based on the age of onset:

- 1. Congenital lymphedema (birth to before 2 years old)
- 2. Lymphedema praecox (2 to 35 years old)
- 3. Lymphedema tarda (over 35 years old) 20

Globally, primary lymphedema affects approximately 1 in 100,000 individuals, with a prevalence of 1.33 per 100,000 in the United States. 21,23 Most cases are diagnosed in pediatric or adolescent stages, with males more commonly affected in infancy (~68%) and females during adolescence (~55%).24,25 Over 20 genes are associated with lymphatic malformations, 21,26 including those linked to hereditary conditions like Nonne-Milroy disease and Meige disease.^{4,22} Other hereditary syndromes associated with vascular and lymphatic abnormalities include Klippel-Trenaunay syndrome, Turner syndrome, Noonan syndrome, Hennekam syndrome, and Parkes-Weber syndrome.²¹ Swelling is typically observed in the lower limbs but can also affect the upper extremities, head, neck, and trunk.²⁷ Primary lymphedema may progress, stagnate, or regress over time.21

Secondary Lymphedema

Secondary lymphedema is an acquired condition resulting from injury to lymphatic structures.²² It affects 1 in 1.000 individuals, accounting for 99% of adult and 3% of pediatric lymphedema cases. 23-25 This more common and often debilitating form is frequently associated with cancer treatments like surgery and radiation therapy. Prevalence is influenced by the cause of lymphatic injury and geographical location. In Canada, secondary lymphedema was considered to be caused by:

- 1. Venous disease (72%)
- 2. Obesity (54.4%)
- 3. Non-cancer causes (14.7%)
- 4. Cancer/metastatic disease (17.6%)
- 5. Treatment-related obstruction (8.8%)

Globally, lymphatic filariasis (elephantiasis) is the leading cause of secondary lymphedema, affecting approximately 70 million individuals in 83 countries across Africa, Asia, and South America.^{2,28} This condition arises from Wuchereria bancrofti parasite invasions. Podoconiosis, another cause, results from

the absorption of micro silica particles into the feet in endemic regions of Africa.¹⁶ Obesity-induced lymphedema has become increasingly prevalent due to the global obesity epidemic, with over 650 million obese individuals worldwide.29 Individuals with a BMI >50 are particularly at risk, especially for lower extremity lymphedema. Chronic venous disease can also contribute to secondary lymphedema (phlebolymphedema), with studies showing a prevalence of 10.4% and higher rates compared to cancer-related lymphedema (41.8% vs. 33.9%). 30,31 Certain medications, such as protein kinase inhibitors, antidepressants, antihypertensives, corticosteroids, and opioids, may exacerbate secondary lymphedema by promoting peripheral edema and lymphatic dysfunction. 32

Secondary lymphedema research often focuses on breast cancer-related lymphedema (BCRL), which affects approximately 20% of breast cancer survivors in the U.S.^{2,6,33} In lower-income countries, cancer-related lymphedema is also significant, with pooled prevalence rates for arm lymphedema reaching 27%.34 Cervical cancer treatments may lead to lower extremity or genital lymphedema, with incidences up to 69%.35 Prostate cancer treatments can result in genital lymphedema, with a prevalence of 29% for lower extremities and 22% for genitalia.36 Head and neck lymphedema (HNL) associated with cancer treatments impacts both internal structures (larynx, pharynx) and external areas (face, neck), affecting 12-54% of cases. 37 Head and neck lymphedema limits activities such as chewing, swallowing, breathing, and social interactions. 37

Purpose

Lymphedema is a significant global chronic disease that is progressive, debilitating, and impactful at multiple levels. Although it is not curable, lymphedema is manageable and progression is preventable with early diagnosis. Practitioners and researchers need comprehensive information on lymphedema's pathophysiology, assessment, diagnosis, classifications, and treatment options. Unfortunately, this awareness is not yet standardized.³⁸ The purpose of this National Lymphedema Network (NLN) Position Paper is to provide a foundation for understanding lymphedema diagnosis and treatment, paving the way for subsequent NLN position papers.

Diagnosis

Background and Universal Agreement

Since the NLN's 2011 position statement on lymphedema diagnosis and treatment, significant progress has been made in diagnostic criteria and measurement tools, particularly for BCRL. However, there remains no universally accepted gold standard for lymphedema diagnosis. Researchers aim to establish robust diagnostic thresholds, with an increasing focus on prospective surveillance for early diagnosis and improved patient outcomes.

Prospective Surveillance for Secondary Lymphedema

Prospective surveillance involves longitudinal monitoring of at-risk patients using objective and patient-reported outcome measures to facilitate early diagnosis and treatment.³⁹⁻⁴³ Education on recognizing symptoms and self-referral is critical.⁴¹ Compared to traditional treatment models, prospective surveillance is cost-effective,⁴⁴ improves early referrals, reduces the incidence and severity of clinical lymphedema⁴⁵ and has proven feasible in diverse healthcare settings.^{41,43,46-49}

Secondary Lymphedema Risk Factors

Lymph node removal, particularly through dissection for staging cancers, is a major risk factor for lymphedema.^{33,50} Risk factors for breast cancerrelated lymphedema include axillary lymph node dissection (ALND), regional nodal irradiation, high BMI (>25 kg/m²), cellulitis, subclinical swelling, Black race, and Hispanic ethnicity.^{50,51,60-62,52-59} Less clear factors include axillary web syndrome (AWS), taxane-based chemotherapy, and genetic predisposition.⁶³⁻⁶⁸

Elements of a Prospective Surveillance Program

An ideal prospective surveillance program includes preoperative baseline measurements, objective longitudinal assessments, patient education, and self-monitoring. Preoperative baselines account for natural asymmetries and reduce misdiagnosis. Screening should continue for at least five years, 40,72 given the cumulative incidence during this period. A risk-stratified approach is suggested for prospective surveillance, with close monitoring for high-risk individuals and less frequent screening for low-risk patients emphasizing self-monitoring. As detailed in later sections, objective measurement tools and patient-reported outcomes play crucial roles.

Diagnostic Criteria for Lymphedema: The Call for Universal Agreement

Despite years of research, no consensus exists on the diagnostic tools or thresholds for lymphedema. There is a pressing need for lymphatic organizations to align with evidence-based guidelines and discontinue outdated techniques in clinical and research settings.

Core Outcome Set (COS)

Outcome measures (OMs) are essential for assessing lymphedema, its morbidities, and guiding care plans. However, clinicians face barriers to their use, like an overwhelming number of options, knowledge gaps, and resource limitations.77 A standardized COS has been proposed, comprising 12 core OMs domains for BCRL: volume, tissue consistency, pain, joint function, flexibility, sensation, strength, patientreported function, quality of life, fatigue, activity, motor control, and mobility.⁷⁸⁻⁷⁹ Other OMs domains that may be warranted for assessment include integumentary integrity (i.e. wounds, infections, and papillomas) and vascular assessment. These measures enhance interdisciplinary communication, improve documentation, and guide care across the disease continuum. Research is ongoing to develop COSs for lower extremity, truncal, and head and neck lymphedema.

Medical History

Collecting a thorough medical history and subjective data is essential for evaluating and treating lymphedema. Key areas of focus include:

- 1. Onset and Timeline
 - When did the swelling begin? Was the onset gradual or sudden?
 - Are there patterns of fluctuation? Specific times or activities that worsen it?
 - Ones it improve overnight/with elevation?
- 2. Symptom Characteristics
 - Swelling Pattern: Unilateral or bilateral? Localized or generalized?
 - Sensations: Pain, heaviness, tightness, a sense of swelling or tingling?
 - Skin Changes: Erythema, skin thickening, texture changes, or peau d'orange?
 - Complications: History of infections (cellulitis/erysipelas), fluid leakage, hematoma or seroma?
 - Functional Impairment: Difficulties with daily activities or mobility?
- 3. Risk Factors and Triggers
 - Family History: Primary or hereditary lymphedema?

- Surgical History: Cancer surgeries, lymph node dissections, radiation?
- Chronic Conditions: Venous insufficiency, heart/kidney disease, obesity?
- Infections: Recurrent infections or parasitic diseases like filariasis?
- Occupational and Lifestyle Factors
 - Sedentary behavior, comorbid local musculoskeletal conditions, or travel to filariasis-endemic areas?
 - o Dietary patterns, especially sodium intake?
- Psychosocial and Quality of Life Impact
 - Emotional challenges such as body image issues or mental health concerns?
 - Availability of support for managing the condition?
- Prior Treatments
 - History of therapies like manual lymph drainage (MLD), compression therapy, or surgeries?
 - Medications that may impact lymp*fedema risk or fluid status?

Lymphedema Staging and Grading

The International Society of Lymphology (ISL) provides a widely accepted staging system for lymphedema:⁸⁰

- **Stage 0 (Latent)**: Compromised lymphatic transport; no visible swelling.
- **Stage 1**: Reversible swelling that subsides with elevation; pitting may occur.
- **Stage 2**: Persistent swelling that does not subside with elevation; pitting present. Note: As this stage progresses pitting becomes more difficult due to fibrosis and adiposity proliferating.
- **Stage 3 (Elephantiasis)**: Severe fibrosis, adiposity, and trophic skin changes; no pitting.

Diagnostic tools like lymphoscintigraphy (LSG), magnetic resonance lymphography (MRL), and indocyanine green lymphography (ICG-L) complement ISL staging and lymphedema diagnosis. While volume differential guidelines (e.g., ≥200 mL for the upper extremity) exist for lymphedema diagnosis, lower differential volume values cannot rule out lymphedema, and its use is discouraged. Therefore, relative volume change (RVC) is recommended for use in supporting a lymphedema diagnosis and is detailed later in this document. Universal staging systems, despite limitations, remain critical for accurate classification, especially for lower extremity cases. ^{80,81-84}

Lymphatic Imaging

Advances in imaging have improved diagnosis, staging, and treatment planning:

Lymphoscintigraphy (LSG)

- A gold standard technique using technetium-99m tracers to evaluate lymphatic function.
- Key findings include lymphatic vessel count, node visibility, dermal backflow, transport delays, and collateral flow.
- LSG is highly sensitive (96%) and specific (100%), aiding in staging, differential diagnosis, and surgical planning.⁸⁵⁻⁹¹
- LSG aids in surgical planning for lymphedema, including preventive procedures, and is increasingly used in clinical practice. It differentiates lipedema and chronic venous insufficiency, both linked to lymphatic transport abnormalities. Patients with lipedema show delayed, asymmetric lymphatic flow on LSG. As a widely available imaging test, LSG confirms lymphedema, guides therapy, and predicts treatment outcomes. 101,102

Indocyanine Green Lymphography (ICG-L)

- Near-infrared fluorescence imaging maps superficial lymphatics in real time.
- Sensitivity (97%) and accuracy (82%) make it useful for diagnosis, surgical planning, and treatment monitoring.¹⁰³
- MD Anderson classification stages lymphedema from 0 (normal) to 5 (no functional vessels, extensive backflow).¹⁰³⁻¹⁰⁸
- Applications include lymphaticovenular anastomosis (LVA), lymph node transfer, and tailored conservative treatments. ICG-L is minimally invasive but should be used cautiously in patients with liver/kidney disease, iodine sensitivity, or pregnancy. Combining ICG-L with other imaging modalities optimizes outcomes for individualized care.^{109,110,119-123,111-118}

Objective Measurements for Lymphedema Assessment

Volume Measurement

Accurate and standardized volumetric methods have been pivotal in lymphedema screening and detection for decades. 47,48,51,56,74,124-126

 Water Displacement: Once widely used, this method involves submerging a limb into a cylinder and measuring displaced water. Despite its accuracy, its use has declined due to equipment requirements, infection risks, and time inefficiencies.⁷⁴ Circumferential measurements using a flexible tape at regular intervals (e.g., 4 cm, 10 cm) or anatomical landmarks are common due to portability and cost-effectiveness. These are converted to volume using the truncated cone formula. Interval-based protocols (e.g., 4 cm, 10 cm) are efficient but not interchangeable with other methods. Inter-rater reliability improves with standardized protocols and consistent testers. Comparison of extremity volumes are common in clinical practice and

• Girth Measures to Calculate Limb Volume:

o Infrared Optoelectronic Limb Volumetry (Perometry): Perometry provides reliable circumferential measures every 4 mm and automatically calculates limb volume. 127 It is sensitive to subclinical volume changes and efficient for screening but limited by cost, space, and portability. 41,51,75,131-134

is often used to make a lymphedema

diagnosis. Using relative volume changes is

recommended for comparisons of volume

 3D Imaging: Using infrared cameras and custom software 3D imaging offers portable, efficient volume calculations. Early studies show strong correlation with girth measures, perometry, and water displacement.¹³⁵⁻¹³⁷

Bioimpedance Spectroscopy (BIS)

and is detailed later.

BIS uses a spectrum of electrical frequencies to differentiate fluid compartments, making it effective in detecting extracellular fluid changes, particularly in early-stage lymphedema. 138 In BCRL, BIS may aid in early detection and reduce progression to complex decongestive therapy (CDT). 126 Compared to excess volume-based methods, BIS lymphedema index (L-Dex) shows superior sensitivity (AUC = 0.832 vs. 0.649) in detecting BCRL. Devices yield high positive predictive value (96.7%) but moderate sensitivity (72.5%) and specificity (87.5%), with limited accuracy in distinguishing fluid from fat. 140 False negatives are noted in early-stage cases (36%), necessitating combined use with clinical evaluations. 139,141,142 Variability among devices (e.g., platform vs. lead-based systems) highlights the importance of device-specific reference ranges. 139,143,144 Limitations may include space and cost restraints.

Measurement Protocol Considerations: Volume

1. Bilateral Limb Measurements: Arm volume on the side not affected by cancer has high variation, with a median within-patient change of 10.5% observed

in patients screened for BCRL across >6 measurements. Limb volume includes tissues prone to symmetrical fluctuation (e.g., adipose tissue changes), while lymphedema-related edema is asymmetrical and isolated to the at-risk limb. Bilateral measurements, regardless of method (e.g., water displacement, girth measures, perometry, 3D imaging), are recommended for accuracy.¹²⁵

2. Differentiating Edema Types: Volumetric measures do not distinguish lymphedema from other edema types; combining risk factors, symptoms, and clinical exams improves differentiation.

Diagnostic Considerations: Volume

- 1. Preoperative Baseline: Absence of preoperative baseline volume measurements can lead to misdiagnosis rates up to 60%, as arm volume asymmetry often exists preoperatively. Early postoperative measurements are unreliable as baselines, making preoperative baselines crucial for accurate diagnosis. ^{69,124,125}
- 2. Relative vs. Absolute Volume Changes: Absolute volume changes (e.g., 2 cm or 200 mL) are influenced by body weight and BMI fluctuations, while relative volume changes (RVC) (% change) are independent of these factors, making them the preferred metric. 56,124,125,145 Any volumetric method can use the RVC formula: RVC = $[(A_2U_1)/(U_2A_1) 1] \times 100\%$, where A_1 , A_2 are affected-side volumes and U_1 , U_2 are unaffected-side volumes. 124
- 3. Diagnostic Thresholds: Although no universal diagnostic threshold exists, RVC increases of 5-<10% (subclinical lymphedema) and ≥10% (clinical lymphedema) from baseline have demonstrated efficacy in early detection and intervention. 45,51,56
- 4. Bilateral Risk: In cases of bilateral risk (e.g., bilateral lymph node dissection), unaffected limbs are unavailable as controls. For these patients, relative % volume changes, symptoms, clinical exams, or alternative methods like bioimpedance or tissue dielectric constant (TDC) may be utilized.

Electrical Conductive Testing

• Tissue Dielectric Constant (TDC): TDC measures tissue water by analyzing reflected electromagnetic waves. TDC values range from 1–80, with 80 indicating pure water. TDC is supported by normative thresholds for arm and breast lymphedema (1.28–1.40 affected: unaffected TDC ratio). While primarily a research tool, TDC is useful for quantifying tissue water in areas less accessible to circumferential and volumetric methods such as the breast or trunk.

Measurement for Head, Neck, Breast, and Trunk Lymphedema

Traditional volumetric measures are unsuitable for body parts with variable sizes and shapes. Head and neck lymphedema, despite its prevalence, lacks reliable tools. Systematic reviews highlight promising tools like the Patterson scale for internal lymphedema and the LIDS-H&N for external lymphedema, though reliability across measurement points remains inconsistent. For breast and trunk lymphedema, TDC is supported by published thresholds. However, variations in protocols (e.g., resting time, position, measurement site) limit diagnostic accuracy. Emerging methods like 3D imaging show potential for future use.

Integument Assessment

Assessment of primary and secondary lymphedema includes documentation of soft tissue observations such as fibrosis, scar tissue, and radiation damage. Photographic evidence and descriptions of size and color are essential for monitoring intervention outcomes.

The presence of indurated tissue (fibrosis) is critical for staging lymphedema progression according to ISL criteria, as it reflects proliferative fibrosis rather than just volume changes. However, clinically feasible tools to measure fibrosis remain limited, with CLTs often relying on subjective descriptors or semi-quantitative pitting edema tests, which have shown poor reliability. Emerging tools such as pitting edema trainers, edema testers, and rulers require further research to improve reliability and correlation with fibrosis and ISL staging.

More advanced tools like ultrasonography and tonometry provide precise fibrosis measurements. Ultrasonography, recommended for Stage III BCRL diagnosis, assesses tissue thickness and assists with differential diagnoses like lipedema. High-frequency ultrasound has demonstrated good intrarater reliability in assessing skin and subcutis thickness. Tonometry measures tissue stiffness, with tools such as the various tools showing strong reliability. Despite these advances, the cost often limits access, emphasizing the need for affordable, standardized tools for fibrosis measurement.

Axillary web syndrome (AWS), common after ALND, presents as tight cords in the axilla extending to the arm and thumb. Symptoms may appear weeks to years' post-surgery. Assessment includes medical history, diagnostic imaging, observation, palpation, and documentation of cord size, location, and

associated pain, with photographic evidence when possible.169-171

Dermal changes such as hyperkeratosis, papillomas, lymphatic cysts, or fistulas may require adjusted care. Clinicians should document these epidermal conditions with size, location, and photographs. Cysts may progress to lymphatic fistulas, promoting lymphorrhea.

Infections, especially cellulitis, pose significant risks in lymphedema, with 92% of lymphedema-related hospitalizations linked to cellulitis.¹⁷² Non-purulent cellulitis presents as erythema, warmth, edema, and pain, often without fever. Diagnosis relies on clinical observation and patient history, as laboratory tests and blood cultures are unreliable.¹⁷³⁻¹⁷⁴ Other conditions mimicking cellulitis include stasis dermatitis, DVT, and gout, with misdiagnosis contributing to unnecessary antibiotic use.¹⁷³

Malignant lymphedema, indicated by red blotches, rapid progression, and possible open lesions, requires urgent referral.²⁷ Chronic lymphedema may result in Stewart-Treves syndrome, an angiosarcoma with poor prognosis, presenting as hematoma-like lesions or ulcerating papules.¹⁷⁵ Immediate biopsy and consultation are advised when such signs appear.

Genetic Testing

Genetic testing is a valuable tool for diagnosing lymphatic vascular malformations and primary lymphedema by identifying syndromes with lymphatic abnormalities associated with specific phenotypes, alleles, and loci mutations. It is also important to recognize that secondary lymphedema may have a genetic predisposition triggered by iatrogenic factors.176,177 Targeted sequencing, followed by gene identification through the Online Mendelian Inheritance in Man (OMIM) database, is the evidencebased recommendation for molecular diagnosis of primary lymphedema. 176 Michelini et al. identified 382 genetic tests for hereditary lymphedema, most employing Sanger or next-generation sequencing.176 However, the current molecular diagnostic system lacks efficiency and standardized guidelines,176,178 prompting researchers to propose molecular diagnostic flowcharts¹⁷⁶ or pathways¹⁷⁸ for identifying underlying mechanisms. There may also be value in prenatal, early postnatal, or pre-operative genetic testing for primary or multifactorial lymphedema, particularly in cases where early intervention could improve management, surgical planning, or family counseling about familial inheritance patterns.

Objective Measurements for Lymphedema Burden Assessment

Outcome measures are critical in the assessment of impairment severity (e.g., volume, fibrosis, range of motion) and participation burdens (e.g., sports involvement, limitations in daily activities, pyschosocial influences) of lymphedema. While most research focuses on BCRL, recent studies have emphasized the need for standardized OMs across various types of lymphedema. 77-79 Clinicians commonly assess impairments by measuring active range of motion using goniometric measures, muscle strength via manual muscle testing, circumferential measures converted to volume, light touch sensation, tissue consistency through palpation, flexibility of pectoralis major and minor, grip strength using dynamometry, and pain via a visual analog scale.77-79

Patient-Reported Outcome Measures (PROMs):

PROMs are vital for assessing health-related quality of life (HRQOL) in lymphedema patients, but many lack robust methodological and psychometric development. The Lymphedema Life Impact Scale (LLIS) and the Lymphedema Quality of Life Questionnaire (LYMQOL) are helpful with assessing general HRQOL in individuals with lymphedema. For lower extremity lymphedema, the Lymph-ICF-LL and LSIDS-L are appropriate. Male genital lymphedema assessments include the lower limb lymphedema questionnaire and the male genital self-image scale. For head and neck lymphedema, the EORTC QLQ-C30 and FACT-HN are frequently used.

BCRL-specific PROMs include the Lymph-ICF-UL, which has strong psychometric properties,¹⁸⁴ and the Upper Limb Lymphedema-27 (ULL-27).¹⁷⁹ Functional impact tools include the Functional Assessment Screening Questionnaire (FAS-Q)¹⁸⁰and the Lower Extremity Functional Scale (LEFS) for lower extremity lymphedema.¹⁸⁰ The DASH and QuickDASH may be used to assess upper quadrant function in BCRL.⁷⁹ The 9-hole peg test may be used to assess upper extremity activity and motor control.⁷⁹

Mobility and Balance:

Lymphedema often affects mobility and balance.^{185,186} Tools to assess lower extremity lymphedema include the Timed Up and Go (TUG),⁷⁹ Fullerton Advanced Balance (FAB) Scale,¹⁸⁷ and the 5x Sit-to-Stand test.⁷⁹

Treatment

Early Intervention for Asymptomatic Lymphatic Deficits

Untreated lymphedema leads to tissue changes, including excess adipose tissue and fibrosis, making later stages more resistant to treatment. Chronic tissue changes increase infection risks (e.g., cellulitis, erysipelas), initiating a cycle of recurrent infection and worsening edema. Subclinical lymphedema, identified through prospective screening, poses a higher risk for progression to clinical lymphedema, particularly after invasive nodal surgeries (e.g., axillary dissection vs. sentinel node biopsy). Studies report 39.7% of subclinical lymphedema cases after axillary dissection and 11.5% after sentinel biopsy progress to clinical lymphedema without treatment.

Subclinical lymphedema, often detected via limb volume increases (3%-5%)^{51,131} or bioimpedance changes (L-Dex increase ≥6.5), 126 may be present without visible swelling or symptoms. Early intervention strategies have been evaluated in ten prospective studies, including two randomized controlled trials (RCTs) which have shown that benefits of early intervention to reduce the incidence of lymphedema to a range of 7% -11%. 126,131,189-194 Early intervention using compression, exercise, or manual techniques may reduce progression, especially in high-risk patients. Prospective screening allows for close monitoring of efficacy. 45,51,131 Further research is needed to establish evidence-based methodologies, study interventions across all etiologies, and evaluate compression dosing.

Prophylactic Intervention with Compression Garments for Lymphedema Progression

Two studies assessed postoperative compression sleeves in patients undergoing ALND for breast cancer. In the studies by Ochalek et al. and Paramanandam et al., subjects wore Class I compression sleeves on a daily basis. In addition to the compression sleeves, subjects were involved in a standardized exercise program in the study by Ochalek et al. The outcomes for Ochalek et al. and Paramanandam et al., studies that the control group had significantly greater edema (P < 0.001), and the compression group showed reduced arm swelling incidence (HR 0.61 for BIS; HR 0.56 for RAVI) and delayed swelling onset, respectively. 195-197 Follow-up measures revealed persistent benefits of the

interventions for both studies. Prophylactic use of class I compression sleeves may reduce arm swelling in the postoperative period for BCRL, especially in those at high risk of BCRL after nodal dissection. However, data is limited to this population, and further studies are needed to determine effectiveness in other lymphedema etiologies.

Complete Decongestive Therapy

Overview

Effective lymphedema treatment relies on comprehensive approaches. Prior to the advent of Complete Decongestive Thearpy (CDT), interventions included diuretics, limb elevation, pneumatic compression, elastic garments, and invasive procedures such as debulking surgeries. CDT emerged from the foundational work of pioneers such as Winiwarter, Vodder, Asdonk, and Michael and Etelka Foeldi, whose contributions from the 19th century to the 1970s shaped its development.²⁷ Building on anatomical insights from Sappey and advancing manual lymphatic techniques, CDT became a standardized approach in the 1970s under the Foeldis' leadership in Hinterzarten, Germany.

CDT is a two-phase, non-invasive approach for managing lymphedema and other peripheral edemas. Recognized internationally as the conservative gold standard for lymphedema treatment, it is practiced by rehabilitation professionals, nurses, physicians, and licensed manual therapists. The two phases include an intensive clinical phase followed by a selfmanagement phase. Its effectiveness and utility are supported by extensive clinical experience and endorsed by International Society of Lymphology Consensus Documents. Conservational Society of Lymphology Consensus Documents.

Components

CDT consists of the following components, tailored to the treatment phase, severity, and therapeutic goals:

- Manual Lymph Drainage (MLD): Increases lymphangion activity and reabsorption of protein rich fluid to promote lymphatic flow and reduce congestion.
- **Skin Care**: Prevents infection and maintains tissue integrity.
- Multilayered Short-Stretch Bandaging: Reduces filtration, improves the muscle and joint pump,

softens indurated tissue, and prevents reaccumulation of edema.

- Elastic and Non-Elastic Compression Garments: Allows for containment and maintains decongestion in the self-management phase.
- **Decongestive Exercises**: Promotes the muscle and joint pump to facilitate lymphatic and venous return.
- Self-Care Education: Empowers patients to manage their condition effectively.

Each component's role is adjusted to optimize therapeutic outcomes across the treatment continuum.

Phases of Therapy: Intensive/Clinical (Phase I) & Maintenance/Optimization (Phase II)

Phase I: Intensive/Clinical Phase

During Phase I, therapy involves daily (five days per week) sessions designed to significantly reduce systemic lymphatic and peripheral limb congestion. This is achieved through MLD, gradient compression, and exercises promoting lymphatic flow within a compression environment. Daily skin inspection follows bandage removal, accompanied by cleansing and moisturizing to restore suppleness and the skin's acid mantle, followed by manual lymphatic drainage and reapplication of multiple-layer bandaging or other reductive compression garments. Compression is left in place until the next treatment session, without disruption in care. 198

The comprehensive nature of Phase I therapy allows for individualized interventions, focusing on:

- Limb volume reduction 199,200
- Improvements in limb function, weight, contour, and skin integrity²⁰¹
- Patient education for autonomous care.

Therapists use this phase to assess and adapt treatment based on patient-specific needs, maximizing therapeutic outcomes.

Frequency and Duration of Phase I Therapy

The duration of Phase I is guided by clinical factors such as disease severity, skin condition, infection risk, functional limitations, and other practical constraints. CDT is ideally performed 5 days per week until a volume reduction plateau is reached, typically over 3 to 8 weeks. ^{202,203} While daily sessions are optimal, modified schedules may also yield positive outcomes for some patients. However, in general, response to Phase I CDT will depend on

lymphedema severity, with more treatment sessions rendered for advanced stages of lymphedema.²⁰⁴

Phase II: Maintenance/Optimization Phase

Once Phase I goals are achieved, patients transition immediately to Phase II care, without a gap in compression, to independent home management.

The objectives during Phase II include:

- Sustained improvements in limb volume, contour, skin integrity, weight, and function.
- Education concerning skin integrity, hygiene, and infection management.^{205,206}
- Prescription of individualized maintenance compression garments for day and night use.²⁰⁷ These may include off-the-shelf ready-to-wear or customized made-to-measure garments.
- Proficiency in using compression systems and self-administered MLD.
- Incorporation of activity, weight management, and specialized exercises.²⁰⁸⁻²¹²
- Confidence in independent self-management and discharge from daily clinical care.

Monitoring and Support During Phase II

Periodic medical monitoring is critical for long-term success, including:

- Regular garment fittings and replacements every 4-6 months.^{209,213-215}
- Addressing barriers to optimal limb maintenance and stability.
- Providing education and assessing adherence to CDT components.

Specialized equipment used in self-care should be maintained and replaced per manufacturer guidelines to ensure effectiveness.^{209,213-215}

Frequency and Duration of Phase II Therapy

Phase II may last a lifetime, particularly for advanced lymphedema (Stages 2-3).²¹⁶ Early-stage lymphedema (Stages 0-1) may require minimal management focused on preventing exacerbation. When compression therapy alone is sufficient, Phase II can be simplified with basic skincare and general health practices.^{27,216} Prospective surveillance, early identification, and targeted interventions play key roles in tailoring Phase II programs.²¹⁷

Modifications and Individualization of Complete Decongestive Therapy

Lymphedema affects various body regions, requiring flexible application of CDT. Adjustments are often necessary for regions such as the head, neck,

genitals, and trunk, where safe compression or manual manipulation may be challenging. Pediatric lymphedema also requires adaptations to account for age, developmental stage, and caregiver involvement. Strategies focus on engaging intact and impaired lymphatic pathways, using MLD and compression to promote tissue decongestion, while emphasizing skin care, infection prevention, and self-care education.

Head and Neck Lymphedema (HNL)

HNL is less common than lymphedema of the extremities but presents unique challenges. Certified Lymphedema Therapists (CLTs) often pursue advanced training to manage HNL, particularly internal swelling of the tongue, larynx, or pharynx. Intraoral MLD, facial exercises, and customized compression strategies—designed to avoid impairing breathing, swallowing, or daily functions—are effective tools. Scars from surgery or radiation require techniques to soften tissue and improve lymphatic drainage, as raised or poorly healed scars reduce lymph flow.

Compression for HNL must be carefully applied to avoid obstructing drainage or causing harm, especially in cases of carotid artery pathology, cerebrovascular disease, or tumor invasion. Low resting pressure and high working pressure are ideal. Elastic taping can complement MLD and compression, enhancing lymph transport through gentle lifting and stretching forces on the skin. However, caution is required in areas exposed to radiation, where skin integrity may be compromised.^{216,218,220}

Breast and Trunk Lymphedema

Breast and chest wall lymphedema are often overlooked despite being common after breast cancer treatment, particularly in ipsilateral trunk quadrants. Symptoms such as heaviness, redness, and discomfort, along with localized swelling, require careful evaluation of lymphatic territories affected by surgery or radiation therapy. 148,221 Breast involvement often favors the lateral and inferior regions, with gravity contributing to fluid accumulation in pendulous breast tissue. 27,222

Redundant skin folds ("dog ears") or tight bras can exacerbate fluid buildup, while sensory loss may delay reporting of symptoms. Clinical inspection is essential for developing treatment plans, which should prioritize the affected lymph node

territories^{223,224} and avoid deep techniques in irradiated fields to prevent rib fractures or other vascular or integument complications.²²⁵

Manual lymph drainage is key for addressing breast and trunk edema, focusing on superficial and deep lymphatic pathways, including intercostal, parasternal, and paravertebral nodes. Pretreatment should include the contralateral lymphatic system and superficial anastomoses. Compression therapy options may include wide short-stretch bandaging, compressive shapewear, or custom-fitted garments, ensuring proper fit to prevent fluid trapping. Padding can localize pressure, soften fibrotic tissues, and prevent garment edges from rolling. Additional modalities such as elastic taping and Low-Level Laser Therapy (LLLT) may support treatment, which are addressed in later sections.

Genital Lymphedema

The superficial lymphatic system of the lower abdomen, hips, buttocks, and genitals is highly susceptible to lymphedema when inguinal nodes are impaired. In females, swelling often respects the midsagittal watershed, leading to unilateral labial involvement, while males experience diffuse swelling without this boundary. Intrapelvic and abdominal cancer treatments which may include surgery, radiation therapy, and lymphadenectomy, can disrupt lymph flow, causing retrograde congestion in the genitals and lower limbs.³⁶

Primary genital lymphedema is rare, usually resulting from lymphatic malformations, and may become evident during childhood. Chronic genital lymphedema often leads to skin changes (e.g., cysts, papillomas) and fluid leakage that heightens the risk of recurrent cellulitis, which is reported in 85% of cases.²²⁶⁻²²⁸

Treatment prioritizes the core components of CDT, including MLD to activate superficial and deep lymphatic pathways and compression to reduce swelling. Self-care education is critical, focusing on hygiene, infection management, and compression application. Diaphragmatic breathing exercises support thoracic duct drainage, while customized compression pads and garments ensure effective pressure without compromising function.

In cases involving severe complications, surgical excision of non-healing lesions, cysts, or papillomas has proven beneficial, significantly reducing

infections and antibiotic use.²²⁶ Surgical intervention may also address gross enlargement, sexual dysfunction, or persistent pain, with patients reporting improved quality of life post-surgery.^{27,227}

Upper and Lower Extremity Lymphedema

Complete decongestive therapy remains the gold standard for managing extremity lymphedema, combining intensive clinical care with long-term maintenance strategies. Compression therapy is a cornerstone, with duration and intensity tailored to disease severity and clinical outcomes.²²⁹

In early stages (Stage 0 or 1), interventions focus on self-care education, infection prevention, and compression garments, which may suffice to alleviate symptoms. Clinical sessions of MLD may be minimal while continuing prospective surveillance.

In Stage 2 and 3 lymphedema, protein accumulation, fibrosis, and abnormal fat deposition make intensive clinical care essential. Manual lymph drainage promotes lymph uptake and collateral drainage, while multi-layered short-stretch compression bandaging reduces filtration and fluid reaccumulation, facilitates the muscle joint pump, and remodels lymphostatic fibrosis. A plateau in clinical examination of symptoms and objective measurements signifies the transition to the maintenance phase, where compression garments and self-care sustain results. Multiple intensive phases may be necessary to achieve additional improvements.

Microsurgical techniques, such as lymphatic-venous anastomosis or lymph node transfers, can restore drainage following regional node impairment. CDT is utilized to maximize limb reduction prior to surgery, and as needed after surgery. Reductive or excisional surgeries may also be considered for patients with abnormal adipose deposition.²³⁰ Further details about surgical treatments for lymphedema are expanded upon below. Pre- and post-operative consultations with a CLT are critical for optimizing surgical outcomes and managing complications.

Patient education is central to both conservative and surgical approaches, ensuring individualized feasibility of treatment, adherence and maintaining quality of life. Identifying specialized lymphatic surgeons with expertise in CDT and lymphology is essential for the best outcomes.

Therapist Training

Lymphedema treatment falls within the scope of rehabilitation professionals, but advanced education should be pursued due to the limited training in lymphatic system function and disease processes during professional licensure programs. This educational gap often leads to reduced confidence in providing safe and effective care, prompting therapists to seek the Certified Lymphedema Therapist (CLT) designation.

Historically, lymphedema training in the U.S. was unregulated, with variations in program prerequisites and educator qualifications. Despite this, consensus emerged that the knowledge base was substantial enough to define the scope and duration of training programs. These programs, rooted in the German CDT system, included both theoretical and practical components.

The Lymphology Association of North America (LANA) was founded in 2000 to establish certification guidelines, assuring that lymphedema treatments meet state-of-the-art criteria. This association provides a standardized examination to assess the competency of graduates from established training programs. These programs require a minimum of 135 hours of education, divided between psychomotor and didactic training. LANA adopted this model as the baseline requirement for eligibility to sit for its certification exam. Successful candidates earn the CLT-LANA designation, signifying advanced competency.

Legislation introduced in 2010 sought to address lymphedema education and care standards, though it was not ratified. However, it catalyzed LANA's accreditation as a credentialing body. In 2017, LANA obtained recognition from the American National Standards Institute (ANSI) for the CLT-LANA designation, further ensuring minimum educational competencies for lymphedema treatment. Ideally, individuals seeking treatment for lymphedema should pursue a Certified Lymphedema Therapist.

Manual Lymph Drainage

Manual Lymph Drainage (MLD) is a hands-on technique designed to decongest tissues by promoting the movement of interstitial and lymph fluid. Its effects include reducing edema, increasing lymph pulsation and transport, and inducing relaxation via a parasympathetic response.^{231,232} The technique comprises a working phase, where gentle

pressure and skin stretching increase lymph formation, and a relaxation phase, which allows lymph vessel refilling. Contraindications include acute infection, decompensated congestive heart failure, and acute deep venous thrombosis (DVT).

Manual lymph drainage is performed directly on the skin, with pressure adapted to tissue texture—firmer for fibrotic tissues and lighter for softer tissues.²³³ Proper application softens fibrotic tissue while minimizing pain or erythema.^{231,234,235} The treatment sequence begins proximally and progresses distally, promoting lymph flow from areas of stasis into viable lymphatic pathways. Near-infrared imaging has revealed MLD's ability to stimulate intrinsic lymphatic contractions and extrinsic mechanical pumping, increasing the normal lymphatic pumping rate from 6–10 times per minute to as much as 60–100 times per minute.²³⁵⁻²³⁷

Patient-specific MLD sequences are guided by individual medical and surgical histories. Imaging studies using indocyanine green (ICG) have identified region-specific drainage patterns, such as ipsilateral axillary drainage in 74.9% of upper-extremity lymphedema cases and ipsilateral inguinal drainage in 52.3% of lower-extremity cases.²³³ In severe cases, fluid may cross into adjacent quadrants to reach viable drainage pathways.²³³

Evidence on MLD's efficacy is mixed. Systematic reviews and meta-analyses suggest it may not significantly enhance lymphedema management when used alone, citing inconsistent methodologies, variations in technique, and measurement limitations as factors. ^{231,232,238-240} Despite a lack of strong supportive evidence, MLD is considered safe and should not be withheld from patients. ²³¹

MLD has been shown to reduce volume and soften fibrotic tissue when intensively applied during Phase I of CDT.^{234,241} It also benefits patients when combined with compression therapy, demonstrating decongestive effects and improved lymphatic contractile function in imaging studies.^{234,242,243}Early MLD intervention during rehabilitation has proven particularly effective, such as in treating oral cancerrelated lymphedema and improving neck range of motion.²⁴⁴Further research with larger populations is necessary to solidify its role and effectiveness.^{241,245}

Bandaging

Compression bandaging is a key component of CDT

and is worn 24 hours a day during the intensive treatment phase to accommodate daily changes in limb size. Its primary purposes are to increase venous and lymphatic return, reduce limb volume, and soften indurated tissues, making MLD more effective. These effects are achieved by creating counterpressure to reduce fluid filtration, enhancing the muscle-joint pump, breaking up lymphostatic fibrosis, and preventing reaccumulation of fluid.

The bandages provide external compression to increase tissue pressure and facilitating passive lymphatic flow during muscle contraction.²⁴⁷⁻²⁴⁹ This mechanical stimulation increases lymphatic vessel contractions, boosting the pumping rate from the normal 6–10 times per minute to 60–100 times per minute, aiding in tissue decongestion.^{237,250} The efficacy of compression bandaging depends on the bandage type, properties, and the skill of the person applying it. Proper technique minimizes risks and ensures therapeutic benefit.²⁵¹⁻²⁵³

Bandage Types and Application

Short-stretch bandages are most effective for lymphedema due to their low resting pressure and high working pressure.²⁵⁴⁻²⁵⁹Their rigidity provides the resistance needed to enhance the muscle-joint pump. Gradient pressure, achieved with greater compression distally, is created by applying short-stretch bandages in multiple overlapping layers with proper tension.^{255,257,260}

The multilayer bandaging system includes stockinette, finger/toe bandages, padding (cotton, synthetic, or foam), and short-stretch bandages. Each component has a specific role: stockinette protects the skin, finger/toe bandages prevent localized swelling, padding distributes pressure and prevents skin breakdown, and foam softens fibrosis. Proper application ensures dynamic stiffness and structural support.258 Bandage pressure depends on tension, the number of layers, and limb circumference.^{252,255}

Bandaging is applied after skin moisturizing to maintain integrity, covering the entire length of the limb (toes to knee/groin or fingers to axilla) with 50% overlap in layers. Gradient pressure and capillary refill should be assessed post-application, and patients should remain mobile to optimize the muscle-joint pump.

Maintenance and Limitations

Compression bandages can be safely worn for up to 72 hours, but pressure decreases over time due to limb size changes.²⁶¹ A 25% pressure loss can occur within 30-60 minutes, with only 56% of initial pressure remaining after 3 hours. 251,261 Frequent reapplication is essential to restore pressure, inspect the skin, and prevent tissue breakdown. There should not be a gap in compression bandaging during Phase I treatment; bandages should be maintained 24 hours per day unless they need to be removed in cases of discomfort, skin or sensation changes, or for skin inspection and daily hygiene needs. Skin should be cleaned and moisturized during rebandaging. Proper care and maintenance of short-stretch bandages also require regular washing, at least once per week (more frequently if soiled), to maintain compressive properties. Manufacturers recommend that bandages should be washed in lukewarm water with mild detergent, followed by air drying. Short stretch bandages are washable up to 10-50 times depending on the manufacturer of the bandage. Compression bandages should be replaced once they have met the manufacturer's quoted lifespan, averaging approximately every 6 months.

Contraindications

Compression bandaging is contraindicated in cases of acute infection, arterial insufficiency (ABI \leq 0.8), arterial wounds, and decompensated congestive heart failure.

Skincare

Skin care education is a vital component of CDT, focusing on maintaining skin health and integrity to prevent infections. Lymphedema involves proteinrich stagnate fluid, which creates an ideal environment for bacteria, increasing the risk of infections like erysipelas and cellulitis. Erysipelas affects superficial skin layers, while cellulitis involves subcutaneous tissue. Persistent infections are common due to lymphedema-associated immune compromise. Sea, 263, 264 The most significant risk factor for recurrent erysipelas and cellulitis is lymphedema. Each cellulitis episode causes further lymphatic damage, increasing infection risk in a vicious cycle. 266

The inflammatory response in lymphedema can lead to permanent skin changes.²⁶³ Daily skin care and recognizing associated skin disorders are essential to prevent deterioration. Lymphedema-associated skin disorders can be classified into five categories:

directly or indirectly related to lymphedema, caused by mixed venous and lymphatic disease, associated with diseases causing lymphedema, and linked to lymphedema treatment.²⁶³ Disorders include lymphedema rubra, skin fissures, hyperkeratosis, papillomas, fibromas, fibrosis, lymphangitis, dermatitis, eczema, fungal infections, cellulitis, pressure injuries, and wounds.²⁶³

Observation and inspection of the skin are crucial for early intervention and wound prevention. Daily inspections should note cuts, scratches, chaffing, or signs of infection. Changes in skin color, texture, hair growth, fibrosis, hyperkeratosis, hyperpigmentation, papillomatosis, and lymphorrhea should be documented. Nail inspections should check for infection or fungal growth.

Patient education should emphasize cleansing and moisturizing the skin to prevent maceration and injury. Use of pH-neutral lotions and low-pH soaps is recommended to inhibit bacterial colonization while avoiding fragrances, parabens, paraffin, or waxes.^{242,267} Moisturizing keeps skin supple and reduces the risk of breaks or tears that allow bacterial entry. Topical antibiotics can treat small skin breaks.²⁶⁷

Proper nail care is essential for limb integrity. Nails should be trimmed straight across to prevent ingrown nails, and cuticles gently pushed back rather than cut to reduce injury risk. Good nail hygiene minimizes bacterial and fungal infection pathways.²⁶³

Exercise

Exercise is an integral element of CDT and is utilized in both the decongestive and maintenance phases. Research confirms that exercise is safe and positively impacts lymphedema management by enhancing the muscle joint pump, improving venous and lymphatic return, increasing range of motion and strength, enhancing quality of life, and increasing bone mineral density. ^{241,242,268-272}

Remedial or decongestive exercises are specific movements designed to compress lymph vessels through rhythmic muscle contractions, and are a cornerstone of lymphedema exercise programs. These exercises should be performed with compression in place to facilitate lymphatic flow and reduce limb volume. The exercises should target all muscles of the affected limb and follow a sequence mimicking MLD, starting with the

neck and trunk to stimulate central lymph flow, incorporating diaphragmatic breathing, and progressing from proximal to distal muscles. Gentle arm exercises combined with deep breathing significantly reduce secondary arm lymphedema.^{273,274} Diaphragmatic breathing enhances thoracic duct dilation, further promoting lymphatic flow.²⁷⁵ Remedial exercises should be performed regularly to engage the pumping mechanism.

A comprehensive exercise program should address the whole person, not just the affected limb, and include aerobic, strengthening, and flexibility exercises.²⁷¹ Compression bandages or garments should be worn during exercise to increase effectiveness. Aerobic exercises should elevate heart rate to stimulate lymphangiomotoricity. Flexibility exercises maintain range of motion and improve posture. Strengthening exercises should begin with low weights and repetitions, progressing gradually.271 Studies show that supervised weightlifting does not incite lymphedema in those at risk or exacerbate lymphedema in individuals already diagnosed.268,269,271Adhering to exercise guidelines decreases the frequency and severity of flares for individuals with lymphedema.^{268,269} Progressive resistance exercises yield greater volume reductions in self-care routines.²⁷⁶ Exercise equipment like resistance bands, weights, and gym machines can be tailored to individual needs and the severity of lymphedema.

Additional recommended exercises include Tai Chi, Pilates, yoga, walking, biking, and swimming. Aquatic exercises are particularly effective for lymphedema, especially truncal edema. The hydrostatic pressure of water creates a natural compression gradient (22.4 mmHg per 12 inches of immersion), while buoyancy alleviates limb heaviness.²⁷⁷ Water's viscosity provides resistance, promoting strengthening and relaxation, and enhances lymphatic clearance through multidirectional movements.²⁷⁷

In brief, exercise, when performed in a supervised and mindfully progressive manner, should be incorporated for individuals at risk of or with lymphedema.

Compression Garments

Compression garments are a key component of the maintenance phase of CDT, helping to sustain volume reduction achieved during treatment.^{278,279}

These garments are essential tools for promoting self-care, reducing swelling caused by lymph fluid accumulation, and minimizing infection and hospitalization risks.²⁷⁸Patients should be educated on the importance of wearing compression garments, proper use, care, and the recommended replacement schedule of every six months.²⁷⁸

Designed to provide graduated compression, these garments apply the highest pressure distally, gradually decreasing proximally to cover the entire edematous area. The garment style and compression strength should align with the patient's ability to don and doff them, ensure optimal edema control, and maintain skin health. Proper fit is crucial for long-term lymphedema management.

Compression garments assist venous and lymphatic return by exerting external pressure. Made of knitted elastic fibers, the garments provide positive pressure on the limb when worn. They reduce interstitial fluid formation, prevent lymphatic reflux, and support muscle pumping by offering an inelastic barrier.²⁸⁰ This facilitates lymphatic fluid transport, enhances oxygen and nutrient delivery to the skin, and prevents swelling recurrence.²³⁵

Garments are available for both daytime and nighttime use. Daytime garments, designed for high activity, offer high containment, while nighttime garments, intended for low activity, provide midcontainment. Both types come in ready-to-wear and custom-made options. Daytime garments can be circular knit or flat knit. Circular knit garments, tubular and seamless, are typically used for mild lymphedema. Flat knit garments, custom-made and more robust, are recommended for most lymphedema patients due to their superior containment and adaptability to various limb shapes.

Flat knit garments, with their strong wall stability and minimal stretch, avoid settling into skin folds and accommodate shape disproportions. This ensures comfort and effective treatment, particularly for higher compression classes or unique body shapes. Patients should consult specialists for expert measurement and fitting to achieve optimal management of lymphedema.

Compression levels are measured in millimeters of mercury (mmHg). Circular knit garments are available in Compression Class (CCL) 1 (20-30

mmHg), CCL 2 (30-40 mmHg), and CCL 3 (40-50 mmHg), while flat knit garments range from CCL 1 to CCL 4 (>50 mmHg). Compression class selection depends on lymphedema severity, limb shape, and the patient's ability to manage the garment safely. Patients should demonstrate sufficient range of motion and strength for garment use.

Inelastic garments, such as adjustable Velcro wraps, are another option for daytime wear. Made of soft, non-elastic material with Velcro straps, these garments are easy to apply, adjust, and remove.²⁸¹ They offer comfortable resting compression and higher working compression during activity, replicating short-stretch bandaging. A fabric liner protects the skin underneath.

Nighttime compression garments provide gentle, gradient pressure through foam-lined garments or adjustable straps. These non-elastic garments are safe for overnight wear and include foam chips that gently massage the limb, encouraging lymphatic reabsorption and reducing fibrosis.²⁸² They prevent fluid re-accumulation during sleep, offering a time-saving alternative to compression bandaging. Custom-made and ready-to-wear options are available, with mild lymphedema patients benefiting most from their use.²⁰⁷

Maintenance compression garments should only be fitted after sufficient limb volume reduction. Patients should be instructed in proper garment care, including washing methods and frequency, to maintain effectiveness. Adherence to garment use and exercise during the maintenance phase is strongly associated with successful long-term lymphedema control.²⁸¹ Long-term care requires consistent compression garment use to prevent fluid re-accumulation.²⁸³

Intermittent Pneumatic Compression

Intermittent pneumatic compression (IPC) for lymphedema has advanced since the 2011 NLN consensus on lymphedema diagnosis and treatment. Available options for pneumatic compression include units that are single chamber, segmented multi-chamber, and advanced pneumatic compression devices (APCDs) which have truncal and proximal chambers for the purpose of proximal lymphatic pathway clearance. Devices may be controlled manually or preprogrammed for proper calibrations and sequencing of chamber inflation.

Several studies have compared CDT with and without IPC in managing BCRL. One study found no significant differences in volume reduction, pain, or heaviness between the groups, though IPC with CDT improved shoulder external rotation mobility.²⁸⁴ Similarly, other studies support these findings, showing no significant advantage of IPC addition in routine BCRL management. 285,286 Regarding lower extremity lymphedema, research focusing on IPC and MLD in maintenance therapy found no significant differences in objective outcomes but noted improved quality of life (OoL) when IPC was included.²⁸⁷ However, large-scale studies have examined the impact of APCD on lower extremity lymphedema. One study reported consistent volume reductions and improved patient-reported outcomes, including reduced pain and better function.²⁸⁸Another longitudinal study confirmed significant QoL improvements and reductions in limb girth, cellulitis episodes, and skin discoloration over 52 weeks, with high patient compliance.²⁸⁹ Studies evaluating IPC in head and neck lymphedema (HNL) show promise. One study demonstrated that APCD use improved lymphatic drainage and reduced dermal backflow in head and neck cancer survivors. Improvements in facial swelling and patient-reported symptoms further supported its utility in HNL management, though longer-term studies are needed.²⁹⁰

Robust randomized controlled trials on specific dosage and compression parameter protocols are lacking for IPC, especially in upper extremity lymphedema, yet there is preliminary evidence for clinical application for lower extremity lymphedema. One study validated the long-term use of an 8chamber IPC device with high pressure (100-120 mmHg) for a 50-sec (total 400 sec) sequential inflation, reporting sustained decreases in limb circumference and improved tissue elasticity in stage II to IV lower extremity lymphedema. 119 Highpressure IPC for stage II or III lower extremity lymphedema was also recommended as it was evidenced to produce a larger flow volume, decrease skin stiffness, and effectively move subcutaneous extracellular water from distal to proximal regions. 119 Another study used various IPC pressures on menopausal women who had lower extremity venous insufficiency. Although this study did not specifically investigate IPC on subjects with lymphedema, the results demonstrated that higherpressure IPC (120 mmHg) was significantly more effective than lower-pressure IPC (60 mmHg) or CDT

alone in reducing edema in menopausal patients with venous insufficiency.291 A systematic review of IPC dosage parameters in both children and adults identified a trend in IPC for adults toward the use of multichambered sleeves with lower pressures (30-60 mmHg) and shorter durations (45-60 minutes).292 There was scant evidence for specific dosage recommendations of IPC for children. Another study explored different APCD dosing protocols, finding that daily 1-hour treatments over 12 days significantly reduced limb volume and extracellular fluid, while longer sessions (2 hours twice daily) yielded inconsistent results. Notably, it was found that adding padding under IPC sleeves significantly enhanced volume reduction in subjects being treated for lower extremity lymphedema.293 Considering that dosage and pressure parameters are critical in IPC treatment, the synthesis of these studies emphasizes the need for further trials to define and refine dosing protocols and include metrics such as limb volume, bioimpedance, tissue dielectric constant, and patient-reported outcomes.

In summary, intermittent pneumatic compression (IPC) in its various forms plays a role in lymphedema management, as an adjunct to the CDT management phase, rather than a stand-alone treatment. IPC and APCD interventions show efficacy in reducing edema, enhancing lymphatic drainage, and improving patient quality of life across various lymphedema presentations. Programmable IPC devices can even reduce healthcare utilization.294 While advancements in technology and individualized treatment protocols offer promising results, further high-quality, long-term studies are needed to establish standardized guidelines for dosage, duration, and device selection. Furthermore, the effectiveness of IPC and APCD depends on individual patient factors which should be considered in clinical practice and prescription.

Surgical Interventions

Lymphedema can be managed both conservatively and surgically, with conservative methods often serving as the first-line treatment due to their noninvasive nature and accessibility. However, advanced disease or cases unresponsive to conservative treatments necessitate surgical intervention. Surgical options are categorized into preventive procedures for subclinical lymphedema, physiologic procedures for fluid-predominant cases, and debulking procedures for solid-predominant lymphedema. A strategic combination of physiologic

and debulking procedures often yields optimal outcomes.

Physiologic surgeries enhance the lymphatic system's ability to drain fluid, using techniques such as lymphatic tissue transfer or reconnection of lymphatic vessels. These technically complex procedures require specialized training and equipment. Lymph nodes or vessels, along with surrounding tissues, are transferred from donor sites like the groin, lateral torso, neck, or abdomen to recipient areas such as the groin, thigh, axilla, or distal locations like the ankle or wrist. Supermicrosurgery, which connects lymphatic vessels to veins with diameters under 1mm, is a common approach. Direct lymph node-to-vein connections have also been described as effective.²⁹⁵

The choice of physiologic surgery depends on the patient's clinical presentation and the surgeon's expertise. These procedures can result in significant improvements, including reduced infection risk, decreased reliance on compression garments and therapy, enhanced physiologic function, and an overall better quality of life than what nonsurgical treatments alone can achieve. 296-302 Lymph node or vessel transfers have a low risk of causing lymphedema at the donor site, but reverse lymphatic mapping significantly reduces this risk. This technique is well-documented and not experimental.303 Physiologic procedures are also indicated for patients with early-stage lymphatic disease, where damage is only detectable through imaging and symptoms have not yet appeared. ILR/ELR procedures, which repair lymphatic damage during or shortly after cancer surgery, have been well-documented in the medical literature. 304-307 These procedures involve connecting lymphatic vessels to veins to preserve drainage in affected areas. Surgeons must carefully assess the risk of lymphedema development and provide appropriate recommendations to both the patient and cancer physician for informed decision-making.

In advanced lymphedema, where solid material accumulates in the affected tissues, conservative ¹¹⁹ and physiologic surgeries are inadequate. These solids must be surgically removed through reductive procedures, also known as excisional surgeries. Aspiration of solids has consistently been an effective treatment for over 25 years when performed by experienced teams, leading to substantial reductions in excess limb volume and

significant patient outcome improvements. Reductive surgery, involving the aspiration of solids, is far more complex than cosmetic liposuction (suction-assisted lipectomy, or SAL). These intense procedures often involve the removal of large volumes of solids and typically require overnight stays. Comprehensive postoperative care, including bandaging and custom-fitted compression garments, is essential for success, as standard SAL protocols are inadequate for patients with severely compromised lymphatic drainage systems.^{230,308-313}

In conclusion, while conservative management remains the cornerstone of lymphedema treatment, surgical interventions play a vital role in advanced or refractory cases. Physiologic surgeries restore lymphatic function and address fluid-predominant lymphedema, while reductive procedures effectively manage solid-predominant lymphedema. When performed appropriately, these interventions can significantly improve limb volume, reduce complications such as infections, and enhance overall quality of life. Multidisciplinary collaboration, careful patient selection, and adherence to postoperative care protocols are essential to achieving optimal outcomes. As surgical intervention is not a cure for lymphedema, individuals should return to prospective surveillance postoperatively.

Pharmaceuticals and Natural Supplements

Currently, there are no medications that cure primary or secondary lymphedema.³¹⁴ Some pharmaceuticals, such as antidiabetics, calcium channel blockers, and antidepressants, may cause or worsen edema as a side effect.³¹⁵ Research into medications for lymphedema management has expanded but primarily focuses on treating morbidities like infections. Medications include anti-inflammatories, benzopyrones, antibiotics, topical retinoids, antimicrobials, and emollients. Anti-inflammatory drugs may provide temporary swelling reduction, especially during infections.

Coumarin, a benzopyrone found in plants and spices, has been studied for its potential to reduce edema by binding proteins, decreasing skin temperature, and reducing secondary infections. However, it is not FDA-approved due to liver toxicity risks at high doses. 80,316,317 Diosmin, marketed as Daflon, has been used for filarial lymphedema and BCRL but lacks sufficient evidence for its effectiveness. 316 Doxycycline, an antibiotic, has shown potential in reducing inflammation and

lymphedema severity, though study results are mixed. 318,319

Emollients containing ammonium lactate, salicylic acid, or urea can address hyperkeratosis and other secondary epidermal changes. Antimicrobials like penicillin and erythromycin treat cellulitis and lymphangitis. 80 Ketoprofen, an anti-inflammatory, may reduce tissue inflammation and skin thickness, but evidence remains limited. 320

Obesity is a significant risk factor for lymphedema, with a BMI > 30 kg/m2 predictive of BCRL.72 While weight loss may reduce lymphedema volume. evidence is insufficient to confirm its impact on disease progression. 55,321-323 However, establishing and/or maintaining a physician-recommended BMI is advisable with both exercise and nutrition playing key roles in achieving these goals. For individuals with lymphedema, dietary recommendations typically focus on reducing inflammation and fluid retention by avoiding high-salt foods, added sugars, and refined grains while promoting a balanced diet rich in whole grains, vegetables, fruits, and lean proteins.324 Recent studies suggest specific diets and dietary supplements may improve lymphatic function in early-stage secondary lymphedema. 325,326 However, more research is needed to establish specific dietary guidelines.

Supplements, including synbiotics (probiotics and prebiotics), may benefit lymphedema patients. Preliminary evidence suggests synbiotics, combined with a calorie-restricted diet, can maintain levels of vascular endothelial growth factors and anti-inflammatory markers like interleukin-10 in BCRL patients. 327-329

In summary, there is insufficient evidence to recommend specific pharmacologic therapies, dietary modifications, or supplements as primary treatments for lymphedema. Current recommendations focus on general health measures, with further research needed to develop targeted interventions.

Complementary, Integrative, and Alternative Treatments

Various complementary and alternative treatments may supplement standard care for lymphedema, particularly for those with severe cases or limited response to conventional therapies.

- Vibration/Oscillatory Devices: This electrostatic vibration therapy may reduce pain, swelling, and subcutis thickness but has limited supporting research.^{330,331}
- Negative Pressure Devices: Negative pressure massage and endermology may help individuals by enhancing lymphatic drainage and improving circulation. Although studied for BCRL, there is a lack robust evidence and are not strongly recommended. 332,333
- Acupuncture and Moxibustion: Acupuncture is safe during the maintenance phase of CDT but lacks sufficient evidence for significant lymphedema improvement.³³⁴⁻³³⁶ Moxibustion, often combined with acupuncture, may reduce pain and arm circumference but requires further randomized studies due to moderate bias risks.³³⁷⁻³³⁹
- Elastic Taping: Elastic taping has shown mixed results in secondary lymphedema management. While not strongly advised for volume reduction, it may benefit areas difficult to bandage (e.g., head, neck, or trunk) by facilitating lymph drainage and improving quality of life.³⁴⁰⁻³⁴³
- Photobiomodulation: Low-level laser therapy stimulates lymphangiogenesis and lymphatic motility. While studies indicate reduced volume and improved quality of life in BCRL patients, its effectiveness is not superior to other interventions and lacks a standardized protocol.³⁴⁴⁻³⁴⁹
- Stellate Ganglion Blocks: This intervention may reduce volume and circumference in severe BCRL cases but has limited longitudinal effects and insufficient high-quality evidence. Patients must consult providers about contraindications and potential side effects.³⁵⁰⁻³⁵⁶
- Extracorporeal Shock Wave Therapy (ESWT): By promoting lymphangiogenesis, ESWT has shown favorable outcomes for advanced BCRL, such as reduced fibrosis and improved quality of life. However, limited data and lack of standardized protocols restrict its recommendation.³⁵⁷⁻³⁶¹

Other modalities, including myofascial release, ultrasound, electrical stimulation, and Fluidotherapy, show some benefits when combined with CDT but lack robust evidence. 362-366

For lymphatic filariasis-related lymphedema, integrative medicine (e.g., compression therapy, yoga, Ayurveda, and topical creams) has demonstrated success in reducing volume, improving quality of life, and decreasing cellulitis episodes.^{367–370}

In summary, complementary treatments may

enhance standard care for lymphedema, particularly in severe or refractory cases, but require further research to establish efficacy and protocols.

Summary and Recommendations

A comprehensive medical history and diagnostic evaluation by qualified healthcare professionals is essential before initiating lymphedema treatment. Prospective surveillance and early intervention, especially in cancer-related lymphedema, have been shown to prevent its manifestation or progression. Proper education and adherence to behavioral changes addressing risk factors are critical for both practitioners and patients.

The primary goals of lymphedema treatment are to reduce and maintain volume reduction, prevent functional complications, improve skin health, reduce infection risk, support patient adherence, and enhance overall quality of life. Complete Decongestive Therapy (CDT) remains the gold standard for conservative management, with proven benefits in reducing limb volume, improving symptoms, and preventing infections. Patient engagement during Phase II of CDT is crucial for sustaining these improvements. Intermittent pneumatic compression may be used as an adjunct to CDT.

Over the last decade, surgical approaches have achieved promising results in reducing limb volume. Although not a cure, microsurgical interventions, such as lymphovenous bypass or vascularized lymph node transfer, may be appropriate for qualified patients. Research into complementary therapies, including oscillatory devices, elastic taping, photobiomodulation, and others, suggests potential benefits but remains inconclusive due to limited evidence. Medications and genetic therapies for lymphedema are still in developmental stages.

Treatment plans should be tailored to individual needs and overseen by healthcare providers experienced in lymphedema care. Continued research is imperative to refine existing interventions and develop novel approaches. The integration of patient education, evidence-based practices, and multidisciplinary care will ensure optimal outcomes for those living with lymphedema.

This position paper was developed by the National Lymphedema Network's Medical Advisory Committee on Lymphedema Treatment & Diagnosis. We gratefully acknowledge the contributions of the following committee members whose expertise and dedication made this publication possible.

Cheryl Brunelle, PT, MS, CCS, CLT Wei Chen, MD, FACS David Doublestein, PT, PhD, OCS, CLT-LANA Tammy Mondry, PT, DPT, MSRS, CLT-LANA Steve Norton, CDT Clinical Instructor, CLT-LANA Atilla Soran, MD, MPH, FNCBC, FACS Alphonse Toghian, MD, PhD

References

- 1. Weber E, Aglianò M, Bertelli E, Gabriele G, Gennaro P, Barone V. Lymphatic Collecting Vessels in Health and Disease: A Review of Histopathological Modifications in Lymphedema. Lymphat Res Biol. 2022;20(5):468-477. doi:10.1089/Irb.2021.0090
- 2. Greene A. Epidemiology and Morbidity of Lymphedema. In: Lymphedema. Switzerland: Springer International Publishing; 2015:33-34.
- 3. Moffatt C, Keeley V, Quéré I. The concept of chronic edema A neglected public health issue and an international response: The LIMPRINT study. Lymphat Res Biol. 2019;17(2):121-126. doi:10.1089/lrb.2018.0085
- Manrique OJ, Bustos SS, Ciudad P, et al. Overview of Lymphedema for Physicians and Other Clinicians: A Review of Fundamental Concepts. Mayo Clin Proc. 2022;97(10):1920-1935. doi:10.1016/J.MAYOCP.2020.01.006
- 5. Schwager S, Detmar M. Inflammation and lymphatic function. Front Immunol. 2019;10(308):1. doi:10.3389/FIMMU.2019.00308/BIBTEX
- 6. DiSipio T, Rye S, Newman B, Hayes S. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol. 2013;14(6):500-515. doi:10.1016/S1470-2045(13)70076-7
- 7. Taghian NR, Miller CL, Jammallo LS, O'Toole J, Skolny MN. Lymphedema Following Breast Cancer Treatment and Impact on Quality of Life: A Review. Vol 92. Elsevier; 2014:227-234.
- 8. Ridner SH, Bonner CM, Deng J, Sinclair VG. Voices from the shadows: Living with lymphedema. Cancer Nurs. 2012;35(1). doi:10.1097/NCC.0B013E31821404C0
- 9. Teo I, Novy DM, Chang DW, Cox MG, Fingeret MC. Examining pain, body image, and depressive symptoms in patients with lymphedema secondary to breast cancer. Psychooncology. 2015;24(11):1377-1383. doi:10.1002/PON.3745
- Rockson SG. Lymphedema after breast cancer treatment. Solomon CG, ed. N Engl J Med. 2018;379(20):1937-1944. doi:10.1056/NEJMCP1803290
- 11. Dunberger G, Lindquist H, Waldenström AC, Nyberg T, Steineck G, Åvall-Lundqvist E. Lower limb lymphedema in gynecological cancer survivors Effect on daily life functioning. Support Care Cancer. 2013;21(11):3063-3070. doi:10.1007/S00520-013-1879-3/FIGURES/4
- 12. Bulley C, Coutts F, Blyth C, et al. Upper limb morbidity after treatment for breast cancer: A cross-sectional study of lymphedema and function. Cancer Oncol Res. 2013;1(2):30-39. doi:10.1016/j.ejso.2012.07.250
- 13. Karasimav O, Borman P, Dalyan M, et al. Static and Dynamic Imbalance in Patients with Breast Cancer-Related Lymphedema. https://home.liebertpub.com/lrb. 2023;21(6):601-607. doi:10.1089/LRB.2023.0012
- 14. Yeşil H, Eyigör S, Inbat M, Bulut F. The effects of complex decongestive therapy on kinesthetic sense of hands, upper extremity function, and quality of life in patients with breast cancer-related lymphedema. Turkish J Phys Med Rehabil. 2021;67(2):211. doi:10.5606/TFTRD.2021.5191
- 15. Anbari AB, Sun Y, McCaffrey S, Morton J, Armer JM. The impact of breast cancer-related lymphedema on rural and small-town Survivors' return-to-work and quality of life: A multiple-case study. Cancer Treat Res Commun. 2021;29:100459. doi:10.1016/J.CTARC.2021.100459
- 16. Jaszkul KM, Farrokhi K, Castanov V, et al. Global impact of lymphedema on quality of life and society. Eur J Plast Surg 2023 466. 2023;46(6):901-913. doi:10.1007/S00238-023-02094-W

National Lymphedema Network

- 17. Shen A, Lu Q, Fu X, et al. Risk factors of unilateral breast cancer-related lymphedema: an updated systematic review and meta-analysis of 84 cohort studies. Support Care Cancer. 2023;31(1):18. doi:doi:10.1007/s00520-022-07508-2. PMID: 36513801
- 18. Kim P, Mufti A, Sachdeva M, et al. Stewart-Treves syndrome and other cutaneous malignancies in the context of chronic lymphedema: a systematic review. Int J Dermatol. 2022;61(1):62-70. doi:10.1111/IJD.15736
- 19. Keast D, Moffatt C, Janmohammad A. Lymphedema impact and prevalence international study: The Canadian data. Lymphat Res Biol. 2019;17(2):178-186.
- 20. The incidence and prevalence of lymphedema. Lymphatic Education and Research Network. https://lymphaticnetwork.org/living-with-lymphedema/the-incidence-of-lymphedema. Published 2024. Accessed April 8, 2024.
- 21. Senger J-LB, Kadle RL, Skoracki RJ. Current concepts in the management of primary lymphedema. Medicina 2. 2023;59(894):1-18.
- 22. Palabiyik A, Palabiyik E. An Overview of Lymphedema. In: Cogun H, ed. New Trends in Physiology. First. Cankaya: BIDGE Publications; 2023:97-120. http://www.bidgeyayinlari.com.tr/wp-content/uploads/2024/01/Fizyoloji-ingilizce-1.pdf#page=97. Accessed February 10, 2025.
- 23. Grada AA, Phillips TJ. Lymphedema: Pathophysiology and clinical manifestations. J Am Acad Dermatol. 2017;77(6):1009-1020. doi:10.1016/J.JAAD.2017.03.022
- 24. Colmant C, Turpin S, Lambert R, et al. Pediatric Lymphedema: Study of 180 Patients Referred to a Tertiary Lymphedema Clinic. J Cutan Med Surg. 2022;26(5):502-511. doi:10.1177/12034754221112002/ASSET/IMAGES/LARGE/10.1177_12034754221112002-FIG3.JPEG
- 25. Schook CC, Mulliken JB, Fishman SJ, Grant FD, Zurakowski D, Greene AK. Primary lymphedema: Clinical features and management in 138 pediatric patients. Plast Reconstr Surg. 2011;127(6):2419-2431. doi:10.1097/PRS.0b013e318213a218
- 26. Brouillard P, Boon L, Vikkula M. Genetics of lymphatic anomalies. J Clin Invest. 2014;124(3):898-904. doi:10.1172/JCI71614
- 27. Zuther JE, Norton S. Lymphedema Management; the Comprehensive Guide for Practitioners. 4th ed. (Sydor A, Palumbo E, eds.). New York: Thieme Medical Publishers, Inc.; 2018. doi:978-3-13-139483-5
- 28. Specht S, Suma T, Pedrique B, Hoerauf A. Elimination of lymphatic filariasis in South East Asia. BMJ. 2019;364. doi:doi:10.1136/BMJ.K5198
- 29. Haththotuwa RN, Wijeyaratne CN, Senarath U. Chapter 1 Worldwide epidemic of obesity. In: Mahmood TA, Arulkumaran S, Chervenak FABT-O and O (Second E, eds. Elsevier; 2020:3-8. doi:https://doi.org/10.1016/B978-0-12-817921-5.00001-1
- 30. Son A, O'Donnell TF, Izhakoff J, Gaebler JA, Niecko T, Iafrati MA. Lymphedema-associated comorbidities and treatment gap. J Vasc Surg Venous Lymphat Disord. 2019;7(5):724-730. doi:https://doi.org/10.1016/j.jvsv.2019.02.015
- 31. Dean SM, Valenti E, Hock K, Leffler J, Compston A, Abraham WT. The clinical characteristics of lower extremity lymphedema in 440 patients. *J Vasc Surg Venous Lymphat Disord*. 2020;8(5):851-859. doi:https://doi.org/10.1016/j.jvsv.2019.11.014
- 32. Largeau B, Cracowski J-L, Lengellé C, Sautenet B, Jonville-Béra A-P. Drug-induced peripheral oedema: An aetiology-based review. *Br J Pharmacol*. 2020;87(1):3043-3055. doi:10.1111/bcp.14752

- 33. Liu Y fei, Liu JE, Mak YW, et al. Prevalence and predictors of breast cancer-related arm lymphedema over a 10-year period in postoperative breast cancer patients: A cross-sectional study. Eur J Oncol Nurs. 2021;51:101909. http://www.ncbi.nlm.nih.gov/pubmed/33626424. Accessed August 30, 2022.
- 34. Torgbenu E, Luckett T, Buhagiar MA, Chang S, Phillips JL. Prevalence and incidence of cancer related lymphedema in low and middle-income countries: A systematic review and meta-analysis. BMC Cancer. 2020;20(604):1-20.
- 35. Bona AF, Ferreira KR, Carvalho RBDM, Thuler LCS, Bergmann A. Incidence, prevalence, and factors associated with lymphedema after treatment for cervical cancer: a systematic review. Int J Gynecol Cancer. 2020;30(11):1697-1704. doi:10.1136/IJGC-2020-001682
- 36. Clinckaert A, Callens K, Cooreman A, et al. The prevalence of lower limb and genital lymphedema after prostate cancer treatment: a systematic review. Cancers (Basel). 2022;14(22):5667. doi:10.3390/CANCERS14225667
- 37. Deng J, Ridner SH, Dietrich MS, et al. Prevalence of secondary lymphedema in patients with head and neck cancer. J Pain Symptom Manage. 2012;43(2):244-252. doi:10.1016/j.jpainsymman.2011.03.019
- 38. Rockson SG. Lymphatic medicine: Paradoxically and unnecessarily ignored. Lymphat Res Biol. 2017;15(4):315-316. doi:10.1089/lrb.2017.29033.sr

 Stout NL, Binkley JM, Schmitz KH, et al. A prospective surveillance model for rehabilitation for women with breast cancer. Cancer. 2012;118(S8):2191-2200.
- 40. Boyages J, Vicini FA, Manavi BA, et al. Axillary treatment and chronic breast cancer–related lymphedema: implications for prospective surveillance and intervention from a randomized controlled Trial. JCO Oncol Pract. 2023;19(12):1116-1124.
- 41. Brunelle C, Skolny M, Ferguson C, Swaroop M, O'Toole J, Taghian AG. Establishing and sustaining a prospective screening program for breast cancer-related lymphedema at the massachusetts general hospital: lessons learned. J Pers Med. 2015;5(2):153-164.
- 42. Togawa K, Ma H, Smith AW, et al. Self-reported symptoms of arm lymphedema and health-related quality of life among female breast cancer survivors. Sci Rep. 2021;11(1):10701.
- 43. Brunelle CL, Roberts SA, Horick NK, et al. Integrating symptoms into the diagnostic criteria for breast cancer–related lymphedema: applying results from a prospective surveillance program. Phys Ther. 2020;100(12):2186-2197.
- 44. Stout NL, Pfalzer LA, Springer B, et al. Breast cancer–related lymphedema: comparing direct costs of a prospective surveillance model and a traditional model of care. Phys Ther. 2012;92(1):152-163.
- 45. Koelmeyer LA, Borotkanics RJ, Alcorso J, et al. Early surveillance is associated with less incidence and severity of breast cancer–related lymphedema compared with a traditional referral model of care. Cancer. 2019;125(6):854-862.
- 46. Chance-Hetzler J, Armer J. Cost and feasibility of prospective durveillance in breast cancer-related lymphedema: A review. NLN LymphLink. 2016:3-6. https://lymphnet.org/lymphlink.
- 47. Haley-Emery M. Prospective protocol for lymphedema education and surveillance in a breast health center. Number 5/October 2014. 2014;18(5):27-31.
- 48. Blaney JM, McCollum G, Lorimer J, Bradley J, Kennedy R, Rankin JP. Prospective surveillance of breast cancer-related lymphoedema in the first-year post-surgery: feasibility and comparison of screening measures. Support Care Cancer. 2015;23:1549-1559.

- 49. Patricolo GE, Armstrong K, Riutta J, Lanni T. Lymphedema care for the breast cancer patient: An integrative approach. The Breast. 2015;24(1):82-85.
- 50. Naoum GE, Roberts S, Brunelle CL, et al. Quantifying the impact of axillary surgery and nodal irradiation on breast cancer–related lymphedema and local tumor control: long-term results from a prospective screening trial. J Clin Oncol. 2020;38(29):3430-3438.
- 51. Bucci LK, Brunelle CL, Bernstein MC, et al. Subclinical lymphedema after treatment for breast cancer: risk of progression and considerations for early intervention. Ann Surg Oncol. 2021;28(13):8624-8633.
- 52. Jammallo LS, Miller CL, Singer M, et al. Impact of body mass index and weight fluctuation on lymphedema risk in patients treated for breast cancer. Breast Cancer Res Treat. 2013;142(1):59-67. doi:10.1007/s10549-013-2715-7
- 53. Ridner SH, Dietrich MS, Stewart BR, Armer JM. Body mass index and breast cancer treatment-related lymphedema. Support Care Cancer. 2011;19(6):853-857. doi:10.1007/s00520-011-1089-9
- 54. Koelmeyer LA, Gaitatzis K, Dietrich MS, et al. Risk factors for breast cancer–related lymphedema in patients undergoing 3 years of prospective surveillance with intervention. Cancer. 2022;128(18):3408-3415.
- 55. McLaughlin SA, Brunelle CL, Taghian A. Breast cancer–related lymphedema: risk factors, screening, management, and the impact of locoregional treatment. J Clin Oncol. 2020;38(20):2341.
- 56. Bundred N, Foden P, Todd C, et al. Increases in arm volume predict lymphoedema and quality of life deficits after axillary surgery: a prospective cohort study. Br J Cancer. 2020;123(1):17-25.
- 57. Asdourian MS, Swaroop MN, Sayegh HE, et al. Association between precautionary behaviors and breast cancer–related lymphedema in patients undergoing bilateral surgery. J Clin Oncol. 2017;35(35):3934-3941.
- 58. Ferguson CM, Swaroop MN, Horick N, et al. Impact of ipsilateral blood draws, injections, blood pressure measurements, and air travel on the risk of lymphedema for patients treated for breast cancer. J Clin Oncol. 2016;34(7):691-698.
- 59. Black DM, Jiang J, Kuerer HM, Buchholz TA, Smith BD. Racial disparities in adoption of axillary sentinel lymph node biopsy and lymphedema risk in women with breast cancer. JAMA Surg. 2014;149(8):788-796.
- 60. Kwan ML, Yao S, Lee VS, et al. Race/ethnicity, genetic ancestry, and breast cancer-related lymphedema in the Pathways Study. Breast Cancer Res Treat. 2016;159(1):119-129. doi:10.1007/s10549-016-3913-x
- 61. Montagna G, Zhang J, Sevilimedu V, et al. Risk factors and racial and ethnic disparities in patients with breast cancer-related lymphedema. JAMA Oncol. 2022;8(8):1195-1200.
- 62. Boughey JC, Hoskin TL, Cheville AL, et al. Risk factors associated with breast lymphedema. Ann Surg Oncol. 2014;21:1202-1208.
- 63. Brunelle CL, Serig A. Is axillary web syndrome a risk factor for breast cancer-related lymphedema of the upper extremity? A systematic review and meta-analysis. Breast Cancer Res Treat. 2024:1-20.
- 64. Brunelle CL, Roberts SA, Shui AM, et al. Patients who report cording after breast cancer surgery are at higher risk of lymphedema: results from a large prospective screening cohort. J Surg Oncol. 2020;122(2):155-163.

- 65. Swaroop MN, Ferguson CM, Horick NK, et al. Impact of adjuvant taxane-based chemotherapy on development of breast cancer-related lymphedema: results from a large prospective cohort. Breast Cancer Res Treat. 2015;151:393-403.
- 66. Ohsumi S, Shimozuma K, Ohashi Y, et al. Subjective and objective assessment of edema during adjuvant chemotherapy for breast cancer using taxane-containing regimens in a randomized controlled trial: The National Surgical Adjuvant Study of Breast Cancer 02. Oncology. 2012;82(3):131-138.
- 67. Cariati M, Bains SK, Grootendorst MR, et al. Adjuvant taxanes and the development of breast cancer-related arm lymphoedema. J Br Surg. 2015;102(9):1071-1078.
- 68. Wariss BR, Costa RM, Pereira ACPR, Koifman RJ, Bergmann A. Axillary web syndrome is not a risk factor for lymphoedema after 10 years of follow-up. Support Care Cancer. 2017;25:465-470.
- 69. Sun F, Skolny MN, Swaroop MN, et al. The need for preoperative baseline arm measurement to accurately quantify breast cancer-related lymphedema. Breast Cancer Res Treat. 2016;157:229-240.
- 70. Ridner SH, Dietrich MS, Spotanski K, et al. A prospective study of L-Dex values in breast cancer patients pretreatment and through 12 months postoperatively. Lymphat Res Biol. 2018;16(5):435-441.
- 71. Stout Gergich NL, Pfalzer LA, McGarvey C, Springer B, Gerber LH, Soballe P. Preoperative assessment enables the early diagnosis and successful treatment of lymphedema. Cancer Interdiscip Int J Am Cancer Soc. 2008;112(12):2809-2819.
- 72. McDuff SGR, Mina AI, Brunelle CL, et al. Timing of Lymphedema After Treatment for Breast Cancer: When Are Patients Most At Risk? Int J Radiat Oncol Biol Phys. 2019;103(1):62-70. doi:10.1016/j.ijrobp.2018.08.036
- 73. Kassamani YW, Brunelle CL, Gillespie TC, et al. Diagnostic criteria for breast cancer-related lymphedema of the upper extremity: the need for universal agreement. Ann Surg Oncol. 2022:1-14.
- 74. Dylke E. Measurement of breast cancer-related lymphoedema. J Physiother. 2022;68(4):238-243. Houwen F, Stemkens J, de Schipper PJ, van der Wouw P, Heitink M, van Langen H. Estimates for
- 75. assessment of lymphedema: reliability and validity of extremity measurements. Lymphat Res Biol. 2022;20(1):48-52.
- 76. O'Toole J, Jammallo LS, Miller CL, Skolny MN, Specht MC, Taghian AG. Screening for Breast Cancer-Related Lymphedema: The Need for Standardization. Oncologist. 2013;18(4):350-352.
- 77. Doubblestein DA, Spinelli BA, Goldberg A, Larson CA, Yorke AM. Facilitators and barriers to the use of outcome measures by certified lymphedema therapists. Rehabil Oncol. 2023;41(3):121-128.
- 78. Doubblestein D, Koehler L, Anderson E, et al. Development of a core outcome set for breast cancer-related lymphedema: a Delphi study. Breast Cancer Res Treat. 2024:1-12.
- 79. Doubblestein D, Koehler L, Anderson E, et al. Development of a core set of outcome measures to be applied toward breast cancer-related lymphedema core outcome domains. Breast Cancer Res Treat. 2024;205(3):439-449.
- 80. The Diagnosis and Treatment of Peripheral Lymphedema: 2023 Consensus Document of The International Society of Lymphology. *Lymphology*. 2023;56(4):133-151. https://search.ebscohost.com/login.aspx? direct=true&AuthType=shib&db=mdc&AN=39207406&authtype=sso&custid=s4165981&site=eds-live&scope=site&custid=s4165981.

- 81. Douglass J, Kelly-Hope L. Comparison of staging systems to assess lymphedema caused by cancer therapies, lymphatic filariasis, and podoconiosis. Lymphat Res Biol. 2019;17(5):550-556. doi:10.1089/lrb.2018.0063
- 83. Davies CC, Levenhagen K, Ryans K, Perdomo M, Gilchrist L. An Executive Summary of the APTA Academy for Oncologic Physical Therapy Clinical Practice Guideline: Interventions for Breast Cancer–Related Lymphedema. Rehabil Oncol. 2020;38(3):103-109.
- 84. Şahinoğlu E, Ergin G, Karadibak D. The agreement between three classification systems used to grade the severity of lymphedema in patients with upper and lower extremity lymphedema: A retrospective study. Physiother Theory Pract. 2024;40(4):874-879.
- 85. Vermeulen K, Vandamme M, Bormans G, Cleeren F. Design and challenges of radiopharmaceuticals. In: Seminars in Nuclear Medicine. Vol 49. Elsevier; 2019:339-356.
- 86. Forte AJ, Boczar D, Huayllani MT, Lu X. Lymphoscintigraphy for evaluation of lymphedema treatment: a systematic review. Cureus. 2019;11(12).
- 87. Yoo J-N, Cheong Y-S, Min Y-S, Lee S-W, Park HY, Jung T-D. Validity of quantitative lymphoscintigraphy as a lymphedema assessment tool for patients with breast cancer. Ann Rehabil Med. 2015;39(6):931-940.
- 88. Polomska AK, Proulx ST. Imaging technology of the lymphatic system. Adv Drug Deliv Rev. 2021;170:294-311.
- 89. Hassanein AH, Maclellan RA, Grant FD, Greene AK. Diagnostic accuracy of lymphoscintigraphy for lymphedema and analysis of false-negative tests. Plast Reconstr Surgery–Global Open. 2017;5(7):e1396.
- 90. Kalawat TC, Chittoria RK, Reddy PK, Suneetha B, Narayan R, Ravi P. Role of lymphoscintigraphy in diagnosis and management of patients with leg swelling of unclear etiology. Indian J Nucl Med. 2012;27(4):226-230.
- 91. Fearn NR, Dylke ES, Bailey D, Kilbreath SL. Lymphoscintigraphy as an outcome measurement for conservative upper limb lymphedema treatments: a systematic review. Lymphat Res Biol. 2022;20(3):248-259.
- 92. Cheng M-H, Chang DW, Patel KM. Principles and Practice of Lymphedema Surgery. Elsevier Health Sciences; 2021.
- 93. Yoo MY, Woo K-J, Kang SY, Moon BS, Kim BS, Yoon H-J. Efficacy of preoperative lymphoscintigraphy in predicting surgical outcomes of lymphaticovenous anastomosis in lower extremity lymphedema: Clinical correlations in gynecological cancer-related lymphedema. PLoS One. 2024;19(1):e0296466.
- 94. Crescenzi R, Marton A, Donahue PMC, et al. Tissue sodium content is elevated in the skin and subcutaneous adipose tissue in women with lipedema. Obesity. 2018;26(2):310-317.
- 95. van de Pas CB, Boonen RSM, Stevens S, Willemsen S, Valkema R, Neumann M. Does tumescent liposuction damage the lymph vessels in lipoedema patients? Phlebology. 2020;35(4):231-236.
- 96. Gould DJ, El-Sabawi B, Goel P, Badash I, Colletti P, Patel KM. Uncovering lymphatic transport abnormalities in patients with primary lipedema. J Reconstr Microsurg. 2020;36(02):136-141.

- 97. Forner-Cordero I, Oliván-Sasot P, Ruiz-Llorca C, Muñoz-Langa J. Lymphoscintigraphic findings in patients with lipedema. Rev Española Med Nucl e Imagen Mol (English Ed. 2018;37(6):341-348.
- 98. van la Parra RFD, Deconinck C, Pirson G, Servaes M, Fosseprez P. Lipedema: what we don't know. J Plast Reconstr Aesthetic Surg. 2023;84:302-312.
- 99. Lurie F, Malgor RD, Carman T, et al. The American Venous Forum, American Vein and Lymphatic Society and the Society for Vascular Medicine expert opinion consensus on lymphedema diagnosis and treatment. Phlebology. 2022;37(4):252-266.
- 100. van la Parra RFD, Deconinck C, Krug B. Diagnostic imaging in lipedema: A systematic review. Obes Rev. 2024;25(1):e13648.
- 101. Vignes S, Simon L, Benoughidane B, Simon M, Fourgeaud C. Clinical and scintigraphic predictors of primary lower limb lymphedema-volume reduction during complete decongestive physical therapy. Phys Ther. 2020;100(5):766-772.
- 102. Kim YH, Hwang JH, Bae JH, Choi JY. Predictive value of lymphoscintigraphy in patients with breast cancer-related lymphedema undergoing complex decongestive therapy. Breast Cancer Res Treat. 2019;173:735-741.
- 103. Akita S, Mitsukawa N, Kazama T, et al. Comparison of lymphoscintigraphy and indocyanine green lymphography for the diagnosis of extremity lymphoedema. J Plast Reconstr Aesthetic Surg. 2013;66(6):792-798.
- 104. Vargo M, Aldrich M, Donahue P, et al. Current diagnostic and quantitative techniques in the field of lymphedema management: a critical review. Med Oncol. 2024;41(10):241.
- 105. Monticone M, Ferriero G, Keeley V, et al. Lymphedema quality of life questionnaire (LYMQOL): Cross-cultural adaptation and validation in Italian women with upper limb lymphedema after breast cancer. Disabil Rehabil. 2022;44(15):4075-4080.
- 106. Panico A, Gatta G, Salvia A, Grezia G Di, Fico N, Cuccurullo V. Radiomics in Breast Imaging: Future Development. J Pers Med. 2023;13(5):862.
- 107. Son H, Lee S, Kim K, Koo K, Hwang CH. Deep learning-based quantitative estimation of lymphedema-induced fibrosis using three-dimensional computed tomography images. Sci Rep. 2022;12(1):15371.
- 108. Chang DW, Suami H, Skoracki R. A prospective analysis of 100 consecutive lymphovenous bypass cases for treatment of extremity lymphedema. Plast Reconstr Surg. 2013;132(5):1305-1314
- 109. Wu J, Wang Z, Zeng H, et al. Comparison of indocyanine green and methylene blue use for axillary reverse mapping during axillary lymph node dissection. MedComm. 2020;1(2):211-218.
- 110. Yadav SK, Bharath S, Sharma D, et al. A systematic review and meta-analysis of diagnostic performance of fluorescein-guided sentinel lymph node biopsy in early breast cancer. Breast Cancer Res Treat. 2024:1-12.
- 111. Gennaro M, Maccauro M, Sigari C, et al. Selective axillary dissection after axillary reverse mapping to prevent breast-cancer-related lymphoedema. Eur J Surg Oncol. 2013;39(12):1341-1345.
- 112. Conversano A, Abbaci M, Karimi M, et al. Axillary reverse mapping using near-infrared fluorescence imaging in invasive breast cancer (ARMONIC study). *Eur J Surg Oncol*. 2022;48(12):2393-2400.

- 113. Yuan Q, Wu G, Xiao S-Y, et al. Identification and preservation of arm lymphatic system in axillary dissection for breast cancer to reduce arm lymphedema events: a randomized clinical trial. Ann Surg Oncol. 2019;26:3446-3454.
- 114. Abbaci M, Conversano A, De Leeuw F, Laplace-Builhé C, Mazouni C. Near-infrared fluorescence imaging for the prevention and management of breast cancer-related lymphedema: A systematic review. Eur J Surg Oncol. 2019;45(10):1778-1786.
- 115. Herremans KM, Cribbin MP, Riner AN, et al. Five-year breast surgeon experience in LYMPHA at time of ALND for treatment of clinical T1–4N1–3M0 breast cancer. Ann Surg Oncol. 2021;28(10):5775-5787.
- 116. Cuccurullo V, Rapa M, Catalfamo B, Gatta G, Di Grezia G, Cascini GL. The Role of Imaging of Lymphatic System to Prevent Cancer Related Lymphedema. Bioengineering. 2023;10(12):1407.
- 117. Suami H, Heydon-White A, Mackie H, Czerniec S, Koelmeyer L, Boyages J. A new indocyanine green fluorescence lymphography protocol for identification of the lymphatic drainage pathway for patients with breast cancer-related lymphoedema. BMC Cancer. 2019;19:1-7.
- 118. Soran A, Senol K, Lupinacci K. Navigating Lymphedema: The Impact of Indocyanine Green Lymphography on Personalized Therapy Outcomes in Breast Cancer Patients. Clin Breast Cancer. 2024.
- 119. Zaleska MT, Olszewski WL. The effectiveness of intermittent pneumatic compression in therapy of lymphedema of lower limbs: methods of evaluation and results. Lymphat Res Biol. 2019;17(1):60-69.
- 120. Nowak S, Henkel A, Theis M, et al. Deep learning for standardized, MRI-based quantification of subcutaneous and subfascial tissue volume for patients with lipedema and lymphedema. Eur Radiol. 2023;33(2):884-892.
- 121. Goudarzi S, Whyte J, Boily M, Towers A, Kilgour RD, Rivaz H. Segmentation of arm ultrasound images in breast cancer-related lymphedema: A database and deep learning algorithm. IEEE Trans Biomed Eng. 2023;70(9):2552-2563.
- 122. Eldaly AS, Avila FR, Torres-Guzman RA, et al. Artificial intelligence and lymphedema: State of the art. J Clin Transl Res. 2022;8(3):234.
- 123. Muraleedharan S, Tripathy K. Indocyanine green (ICG) angiography. In: Europe P, ed. StatPearls. Treasure Island: StatPearls Publishing; 2023.
- 124. Ancukiewicz M, Russell TA, Otoole J, et al. Standardized method for quantification of developing lymphedema in patients treated for breast cancer. Int J Radiat Oncol Biol Phys. 2011;79(5):1436-1443.
- 125. Ancukiewicz M, Miller CL, Skolny MN, et al. Comparison of relative versus absolute arm size change as criteria for quantifying breast cancer-related lymphedema: the flaws in current studies and need for universal methodology. Breast Cancer Res Treat. 2012;135(1):145-152. doi:10.1007/s10549-012-2111-8
- 126. Ridner SH, Dietrich MS, Boyages J, et al. A comparison of bioimpedance spectroscopy or tape measure triggered compression intervention in chronic breast cancer lymphedema prevention. Lymphat Res Biol. 2022;20(6):618-628.
- 127. Brorson H, Höijer P. Standardised measurements used to order compression garments can be used to calculate arm volumes to evaluate lymphoedema treatment. *J Plast Surg Hand Surg*. 2012;46(6):410-415.

- 128. Sun F, Hall A, Tighe MP, et al. Perometry versus simulated circumferential tape measurement for the detection of breast cancer-related lymphedema. Breast Cancer Res Treat. 2018;172:83-91.
- 129. Tidhar D, Armer JM, Deutscher D, Shyu C-R, Azuri J, Madsen R. Measurement issues in anthropometric measures of limb volume change in persons at risk for and living with lymphedema: a reliability study. J Pers Med. 2015;5(4):341-353.
- 130. Brunelle C, Fell G, Taghian A. Agreement of breast cancer-related lymphedema diagnosis across commonly utilized diagnostic criteria: A cross-sectional observational cohort study. Rehabil Oncol. 2025;43(2).
- 131. Kondra K, Stanton E, Salibian AA, Patel KM. Imaging in lymphedema management: A narrative review of preoperative assessment & surgical planning. Ann Breast Surg. 2024;8(5):1-6. doi:10.21037/abs-22-40
- 132. Lee M-J, Boland RA, Czerniec S, Kilbreath SL. Reliability and concurrent validity of the perometer for measuring hand volume in women with and without lymphedema. Lymphat Res Biol. 2011;9(1):13-18.
- 133. Havens LM, Brunelle CL, Gillespie TC, et al. Use of technology to facilitate a prospective surveillance program for breast cancer-related lymphedema at the Massachusetts General Hospital. Mhealth. 2021;7:11-11. doi:10.21037/mhealth-19-218
- 134. Adriaenssens N, Buyl R, Lievens P, Fontaine C, Lamote J. Comparative study between mobile infrared optoelectronic volumetry with a perometer® and two commonly used methods for the evaluation of arm volume in patients with breast cancer related lymphedema of the arm. Lymphology. 2013;46(3):132-143.
- 135. White BN, Lu IM, Kao LS, et al. An infrared 3D scanning device as a novel limb volume measurement tool in breast cancer patients. World J Surg Oncol. 2020;18:1-7.
- 136. Binkley JM, Weiler MJ, Frank N, Bober L, Dixon JB, Stratford PW. Assessing arm volume in people during and after treatment for breast cancer: reliability and convergent validity of the LymphaTech System. Phys Ther Rehabil J. 2020;100(3):457-467. doi:10.1093/ptj/pzz175
- 137. Yahathugoda C, Weiler MJ, Rao R, et al. Use of a novel portable three-dimensional imaging system to measure limb volume and circumference in patients with filarial lymphedema. Am J Trop Med Hyg. 2017;97(6):1836.
- 138. Hidding JT, Viehoff PB, Beurskens CHG, van Laarhoven HWM, Nijhuis-van der Sanden MWG, van der Wees PJ. Measurement properties of instruments for measuring of lymphedema: systematic review. Phys Ther. 2016;96(12):1965-1981.
- 139. Ward LC, Gaitatzis K, Thompson B, Paramanandam VS, Koelmeyer LA. Reliability of L-Dex Scores for Assessment of Unilateral Breast Cancer-Related Lymphedema. Eur J Breast Heal. 2024;20(4):251.
- 140. Varagur K, Shetty AS, Saoud K, et al. Association between Bioimpedance Spectroscopy and Magnetic Resonance Lymphangiography in the Diagnosis and Assessment of Lymphedema. J Reconstr Microsurg. 2024;40(03):177-185.
- 141. Qin ES, Bowen MJ, Chen WF. Diagnostic accuracy of bioimpedance spectroscopy in patients with lymphedema: a retrospective cohort analysis. J Plast Reconstr Aesthetic Surg. 2018;71(7):1041-1050.
- 142. Ward LC, Thompson B, Gaitatzis K, Koelmeyer LA. Comparison of Volume Measurements and Bioimpedance Spectroscopy Using A Stand-on Device for Assessment of Unilateral Breast Cancer-Related Lymphedema. *Eur J Breast Heal*. 2024;20(2):141.

- 143. Koelmeyer LA, Ward LC, Dean C, Boyages J. Body positional effects on bioimpedance spectroscopy measurements for lymphedema assessment of the arm. Lymphat Res Biol. 2020;18(5):464-473.
- 144. Koelmeyer LA, Gaitatzis K, Thompson B, Ward LC. Effects of Body Positioning When Assessing Lymphedema of the Lower Limb Using Bioimpedance Spectroscopy. Lymphat Res Biol. 2024;22(1):43-54.
- 145. Bundred NJ, Stockton C, Keeley V, et al. Comparison of multi-frequency bioimpedance with perometry for the early detection and intervention of lymphoedema after axillary node clearance for breast cancer. Breast Cancer Res Treat. 2015;151:121-129.
- 146. Toro C, Markarian B, Mayrovitz HN. Breast cancer-related lymphedema assessed via tissue dielectric constant measurements. Cureus. 2024;16(4).
- 147. Lahtinen T, Seppälä J, Viren T, Johansson K. Experimental and analytical comparisons of tissue dielectric constant (TDC) and bioimpedance spectroscopy (BIS) in assessment of early arm lymphedema in breast cancer patients after axillary surgery and radiotherapy. Lymphat Res Biol. 2015;13(3):176-185.
- 148. Riches K, Cheung K-L, Keeley V. Improving the assessment and diagnosis of breast lymphedema after treatment for breast cancer. Cancers (Basel). 2023;15(6):1758.
- 149. Johansson K, Darkeh MH, Lahtinen T, Bjork-Eriksson T, Axelsson R. Two-year follow-up of temporal changes of breast edema after breast cancer treatment with surgery and radiation evaluated by tissue dielectric constant (TDC). Eur J Lymphology. 2015;27(73):15-21.
- 150. Johansson K, Lahtinen T. Breast edema following conserving surgery and radiotherapy. Eur J Lymphology Relat Probl. 2014;25(70):1-5.
- 151. Mayrovitz HN, Somarriba C, Weingrad DN. Breast tissue dielectric constant as a potential breast edema assessment parameter. Lymphat Res Biol. 2022;20(1):33-38.
- 152. Arends CR, Lindhout JE, van der Molen L, Wilthagen EA, van den Brekel MWM, Stuiver MM. A systematic review of validated assessments methods for head and neck lymphedema. Eur Arch Oto-Rhino-Laryngology. 2023;280(6):2653-2661.
- 153. Doubblestein DA, Spinelli BA, Yorke AM, Goldberg A, Larson CA. Use of outcome measures by certified lymphedema therapists with breast cancer survivors with breast cancer-related lymphedema. Rehabil Oncol. 2022;(06/28/2022):1-13. https://journals.lww.com/rehabonc/Fulltext/9900/Use_of_Outcome_Measures_by_Certified_Lymp hedema.12.aspx.
- 154. Brodovicz KG, McNaughton K, Uemura N, Meininger G, Girman CJ, Yale SH. Reliability and feasibility of methods to quantitatively assess peripheral edema. Clin Med Res. 2009;7(1-2):21-31.
- 155. Levenhagen K, Davies C, Perdomo M, Ryans K, Gilchrist L. Diagnosis of upper-quadrant lymphedema secondary to cancer: Clinical practice guideline from the Oncology Section of APTA. Rehabil Oncol. 2017;35(3):E1-E18. doi:10.1097/01.REO.00000000000000000
- 156. Calzon ME, Blebea J, Pittman C. Quantitative measurement of pitting edema with a novel edema ruler. J Vasc Surg Cases, Innov Tech. 2024;10(1):101373.
- 157. Suehiro K, Mizumoto Y, Morikage N, et al. Hardness sensed by skin palpation in legs with lymphedema is predominantly correlated with dermal thickening. Lymphat Res Biol. 2022;20(4):368-375.
- 158. Iker E, Mayfield CK, Gould DJ, Patel KM. Characterizing lower extremity lymphedema and lipedema with cutaneous ultrasonography and an objective computer-assisted measurement of dermal echogenicity. *Lymphat Res Biol.* 2019;17(5):525-530.

- 159. Park JY, Jeon JY, Cha S. Ultrasonographic features of the skin and subcutis: correlations with the severity of breast cancer-related lymphedema. Ultrasonography. 2024;43(4):284.
- 160. Lee DG, Cho JH. Can tissue stiffness measured using shear-wave elastography represent lymphedema in breast cancer? Lymphat Res Biol. 2022;20(6):607-611.
- 161. Phillips J, Reynolds KJ, Gordon SJ. Dermal thickness and echogenicity using DermaScan C high frequency ultrasound: Methodology and reliability testing in people with and without primary lymphoedema. Ski Res Technol. 2020;26(6):813-823.
- 162. Kilbreath S, Fearn N, Dylke E. Ultrasound: Assessment of breast dermal thickness: Reliability responsiveness to change, and relationship to patient -reported outcomes. Ski Res Technol. 2022;28(1):111-118. doi:doi:10.1111/srt.13200
- 163. Sun D, Yu Z, Chen J, Wang L, Han L, Liu N. The value of using a SkinFibroMeter for diagnosis and assessment of secondary lymphedema and associated fibrosis of lower limb skin. Lymphat Res Biol. 2017;15(1):70-76. doi:10.1089/lrb.2016.0029
- 164. Yu Z, Liu N, Wang L, Chen J, Han L, Sun D. Assessment of skin properties in chronic lymphedema: measurement of skin stiffness, percentage water content, and transepidermal water loss. Lymphat Res Biol. 2020;18(3):212-218. doi:10.1089/lrb.2018.0066
- 165. Douglass J, Mableson H, Martindale S, et al. Intra-rater reliability and agreement of the indurometer when used to assess mid-calf tissue compressibility among people affected by moderate to severe lymphedema in bangladesh and ethiopia. Lymphat Res Biol. 2020;18(4):374-380.
- 166. Kim MA, Kim EJ, Lee HK. Use of SkinFibrometer® to measure skin elasticity and its correlation with Cutometer® and DUB® Skinscanner. Ski Res Technol. 2018;24(1):466-471. doi:10.1111/srt.12455
- 167. Douglass J, Graves P, Gordon S. Intrarater reliability of tonometry and bioimpedance spectroscopy to measure tissue compressibility and extracellular fluid in the legs of healthy young people in Australia and Myanmar. Lymphat Res Biol. 2017;15(1):57-63.
- 168. Fujimoto Y, Yuri Y, Tamiya H. Skin mechanical properties measured with skin elasticity measurement device in patients with lymphedema: Scoping review. Ski Res Technol. 2024;30(8):e13861.
- 169. Koehler LA, Haddad TC, Hunter DW, Tuttle TM. Axillary web syndrome following breast cancer surgery: symptoms, complications, and management strategies. Breast Cancer Targets Ther. 2018:13-19.
- 170. Johansson K, Chong H, Ciornei C-D, Brorson H, Mortimer PS. Axillary web syndrome: evidence for lymphatic origin with thrombosis. Lymphat Res Biol. 2020;18(4):329-332.
- 171. Roman MM, Barbieux R, Eddy C, et al. Lymphoscintigraphic investigations for axillary web syndromes. Lymphat Res Biol. 2022;20(4):417-424.
- 172. Lopez M, Roberson ML, Strassle PD, Ogunleye A. Epidemiology of Lymphedema-related admissions in the United States: 2021-2017. Surg Oncol. 2020;35(1):249-253. https://doi.org/10.1016/j.suronc.2020.09.005.
- 173. Nightingale R, Yadav K, Hamill L, et al. Misdiagnosis of uncomplicated cellulitis: a systematic review and meta-analysis. *J Gen Intern Med*. 2023;38(10):2396-2404.
- 174. Biglione B, Cucka B, Kroshinsky D. Cellulitis and Its Mimickers: an Approach to Diagnosis and Management. *Curr Dermatol Rep.* 2022;11(3):138-145.

- 175. Hao K, Sun Y, Zhu Y, et al. A retrospective analysis of Stewart-Treves syndrome in the context of chronic lymphedema. An Bras Dermatol. 2023;98(3):287-295.
- 176. Michelini S, Paolacci S, Manara E, et al. Genetic tests in lymphatic vascular malformations and lymphedema. J Med Genet. 2018;55(4):222-232.
- 177. Michelini S, Cestari M, Michelini S, et al. Study of a supplement and a genetic test for lymphedema management. Acta Bio Medica Atenei Parm. 2020;91(Suppl 13).
- 178. Bonetti G, Paolacci S, Samaja M, et al. Low efficacy of genetic tests for the diagnosis of primary lymphedema prompts novel insights into the underlying molecular pathways. Int J Mol Sci. 2022;23(13):7414.
- 179. Beelen LM, van Dishoeck A-M, Tsangaris E, et al. Patient-reported outcome measures in lymphedema: a systematic review and COSMIN analysis. Ann Surg Oncol. 2021;28(3):1656-1668. doi:10.1245/s10434-020-09346-0
- 180. Dratnol RA, VanPuymbrouck LH. Patient-Reported Outcome Measures of Function and Quality of Life in Individuals with Lower Extremity Lymphedema: A Scoping Review. Open J Occup Ther. 2023;11(1):1-12.
- 181. Grünherz L, Hulla H, Uyulmaz S, Giovanoli P, Lindenblatt N. Patient-reported outcomes following lymph reconstructive surgery in lower limb lymphedema: A systematic review of literature. J Vasc Surg Venous Lymphat Disord. 2021;9(3):811-819.
- 182. Branney P, Walters E, Bryant E, et al. The feasibility of patient reported outcome measures for the care of penile cancer. Int J Urol Nurs. 2022;16(2):138-146.
- 183. Cao AC, Lu JS, Hobday SB, et al. Patient-reported outcomes in head and neck cancer: a systematic review of clinical trials. Int J Radiat Oncol Biol Phys. 2022;112(5):e60.
- 184. Meilani E, Zanudin A, Mohd Nordin NA. Psychometric properties of quality of life questionnaires for patients with breast cancer-related lymphedema: a systematic review. Int J Environ Res Public Health. 2022;19(5):2519.
- 185. Cuviena CF, Perez CS, Nardo VC, das Neves LMS, Rangon FB, de Oliveira Guirro EC. Influence of age and lymphedema on the postural balance of women undergoing breast cancer treatment. J Bodyw Mov Ther. 2021;27:307-313.
- 186. Pedrosa BC de S, Maia JN, Ferreira AP de L, et al. Functionality and quality of life of patients with unilateral lymphedema of a lower limb: a cross-sectional study. J Vasc Bras. 2019;18:e20180066.
- 187. Yoosefinejad AK, Hadadi M, Eslamloo P. Evaluating the responsiveness of the fullerton advanced balance scale in patients with lymphedema secondary to breast cancer surgery. Lymphology. 2019;52(2):61-70.
 - https://www.researchgate.net/profile/Amin_Kordi_yoosefinejad2/publication/335868423_Evaluati ng_the_responsiveness_of_the_fullerton_advanced_balance_scale_in_patients_with_lymphedema_secondary_to_breast_cancer_surgery/links/5ddd0a404585159aa448eea3/Evaluat. Accessed May 6, 2020.
- 188. Hoffner M, Peterson P, Månsson S, Brorson H. Lymphedema leads to fat deposition in muscle and decreased muscle/water volume after liposuction: a magnetic resonance imaging study. Lymphat Res Biol. 2018;16(2):174-181.
- 189. Kaufman DI, Shah C, Vicini FA, Rizzi M. Utilization of bioimpedance spectroscopy in the prevention of chronic breast cancer-related lymphedema. *Breast Cancer Res Treat*. 2017;166:809-815.

- 190. Akita S, Nakamura R, Yamamoto N, et al. Early detection of lymphatic disorder and treatment for lymphedema following breast cancer. Plast Reconstr Surg. 2016;138(2):192e-202e.
- 191. Soran A, Ozmen T, McGuire KP, et al. The importance of detection of subclinical lymphedema for the prevention of breast cancer-related clinical lymphedema after axillary lymph node dissection; a prospective observational study. Lymphat Res Biol. 2014;12(4):289-294.
- 192. Whitworth PW, Shah C, Vicini F, Cooper A. Preventing breast cancer-related lymphedema in highrisk patients: the impact of a structured surveillance protocol using bioimpedance spectroscopy. Front Oncol. 2018;8:197.
- 193. Kilgore LJ, Korentager SS, Hangge AN, et al. Reducing breast cancer-related lymphedema (BCRL) through prospective surveillance monitoring using bioimpedance spectroscopy (BIS) and patient directed self-interventions. Ann Surg Oncol. 2018;25:2948-2952.
- 194. Lacomba M, Sánchez M, Goñi Á, et al. Effectiveness of early physiotherapy to prevent lymphoedema after surgery for breast cancer: Randomised, single blinded, clinical trial. BMJ. 2010;340.
- 195. Ochalek K, Gradalski T, Partsch H, Symptom HP-J of pain and, 2017 U. Preventing Early Postoperative Arm Swelling and Lymphedema Manifestation by Compression Sleeves After Axillary Lymph Node Interventions in Breast Cancer Patients: A Randomized Controlled Trial. J Pain Symptom Manage. 2017;54(3):346-354. doi:10.1016/j.jpainsymman.2017.04.014
- 196. Ochalek K, Partsch H, Gradalski T, Szygula Z. Do compression sleeves reduce the incidence of arm lymphedema and improve quality of life? Tow-year results from a prospective randomized trial in breast cancer survivors. Lymphat Res Biol. 2019;17(1):70-77.
- 197. Paramanandam V, Dylke E, Clark G, Daptardar A, Kulkami A, Nair N. Prophylactic use of compression sleeves reduces the incidence of arm swelling in woment at high risk of breast cancer-related lymphedema: a randomized controlled trial. J Clin Oncol. 2022;40(18):2004-2012.
- 198. Borman P, Yaman A, Yasrebi S, İnanlı AP, Dönmez AA. Combined complete decongestive therapy reduces volume and improves quality of life and functional status in patients with breast cancer-related lymphedema. Clin Breast Cancer. 2022;22(3):e270-e277.
- 199. Gilchrist L, Levenhagen K, Davies CC, Koehler L. Effectiveness of complete decongestive therapy for upper extremity breast cancer-related lymphedema: a review of systematic reviews. Med Oncol. 2024;41(11):1-19.
- 200. Michopoulos E, Papathanasiou G, Vasilopoulos G, Polikandrioti M, Dimakakos E. Effectiveness and safety of complete decongestive therapy of phase I: a lymphedema treatment study in the Greek population. Cureus. 2020;12(7).
- 201. Sezgin Ozcan D, Dalyan M, Unsal Delialioglu S, Duzlu U, Polat CS, Koseoglu BF. Complex decongestive therapy enhances upper limb functions in patients with breast cancer-related lymphedema. Lymphat Res Biol. 2018;16(5):446-452.
- 202. Lasinski BB, Thrift KM, Squire D, et al. A systematic review of the evidence for complete decongestive therapy in the treatment of lymphedema from 2004 to 2011. PM&R. 2012;4(8):580-601.
- 203. Sun Y, Fu MR, Jiang Y, Little AS. Initiating and maintaining complete decongestive therapy self-management of lymphedema among breast cancer survivors: descriptive qualitative study. *Integr Cancer Ther*. 2024;23:15347354241226624.

National Lymphedema Network

- 204. Keskin D, Dalyan M, Ünsal-Delialioğlu S, Düzlü-Öztürk Ü. The results of the intensive phase of complete decongestive therapy and the determination of predictive factors for response to treatment in patients with breast cancer related-lymphedema. Cancer Rep. 2020;3(2):e1225.
- 205. Fu MR, Liu B, Qiu JM, et al. The effects of daily-living risks on breast cancer-related lymphedema. Ann Surg Oncol. 2024;31(12):8076-8085.
- 206. Schaverien M V, Moeller JA, Cleveland SD. Nonoperative treatment of lymphedema. In: Seminars in Plastic Surgery. Vol 32. Thieme Medical Publishers; 2018:17-21.
- 207. McNeely ML, Dolgoy ND, Rafn BS, et al. Nighttime compression supports improved self-management of breast cancer-related lymphedema: A multicenter randomized controlled trial. Cancer. 2022;128(3):587-596.
- 208. McNeely ML, Al Onazi MM, Bond M, et al. Essential components of the maintenance phase of complex decongestive therapy. Med Oncol. 2024;41(11):289.
- 209. Mehrara BJ, Greene AK. Lymphedema and obesity: is there a link? Plast Reconstr Surg. 2014;134(1):154e-160e.
- 210. Melam GR, Buragadda S, Alhusaini AA, Arora N. Effect of complete decongestive therapy and home program on health-related quality of life in post mastectomy lymphedema patients. BMC Womens Health. 2016;16:1-9.
- 211. Labropoulos N, Raiker A, Gasparis A, Weycker D, O'Donnell Jr T. Clinical impact of severe obesity in patients with lymphoedema. Eur J Vasc Endovasc Surg. 2023;65(3):406-413.
- 212. Liao S-F, Li S-H, Huang H-Y, et al. The efficacy of complex decongestive physiotherapy (CDP) and predictive factors of lymphedema severity and response to CDP in breast cancer-related lymphedema (BCRL). The Breast. 2013;22(5):703-706.
- 213. Tidhar D, Hodgson P, Shay C, Towers A. A lymphedema self-management programme: report on 30 cases. Physiother Canada. 2014;66(4):404-412.
- 214. Scheer R. Compression garments for managing lymphoedema. J Lymphoedema. 2017;12(1):39-45.
- 215. Ostby PL, Armer JM. Complexities of adherence and post-cancer lymphedema management. J Pers Med. 2015;5(4):370-388.
- 216. Pereira de Godoy JM, Pereira de Godoy HJ, Lopes Pinto R, Facio Jr FN, Guerreiro Godoy M de F. Maintenance of the results of stage II lower limb lymphedema treatment after normalization of leg size. Int J Vasc Med. 2017;2017(1):8515767.
- 217. Michopoulos E, Papathanasiou G, Krousaniotaki K, Vathiotis I, Troupis T, Dimakakos E. Lymphedema duration as a predictive factor of efficacy of complete decongestive therapy. Lymphology. 2021;54(3):140-153.
- 218. Smith BG, Hutcheson KA, Little LG, et al. Lymphedema outcomes in patients with head and neck cancer. Otolaryngol Neck Surg. 2015;152(2):284-291.
- 219. Maus EA, Tan I-C, Rasmussen JC, et al. Near-Infrared Fluorescence Imaging of Lymphatics in Head and Neck Lymphedema. *Head Neck*. 2012;34(3):448-453. doi:10.1002/hed.21538
- 220. Atar S, Atar Y, Uygan U, et al. The efficacy of Kinesio taping on lymphedema following head and neck cancer therapy: a randomized, double blind, sham-controlled trial. *Physiother Theory Pract*. 2023;39(9):1832-1846.
- 221. Brunelle C, Boyages J, Jung A, et al. Breast lymphedema following breast-conserving tratment for breast cancer: current status and future directions. *Breast Cancer Res Treat*. 2024;204(2):193-222. doi:10.1007/s10549-023-07161-1

- 222. Degnim AC, Miller J, Hoskin TL, et al. A prospective study of breast lymphedema: frequency, symptoms, and quality of life. Breast Cancer Res Treat. 2012;134:915-922.
- 223. 223. Wanchai A, Armer JM, Stewart BR, Lasinski BB. Breast cancer-related lymphedema: A literature review for clinical practice. Int J Nurs Sci. 2016;3(2):202-207.
- 224. 224. Hisano F, Niwa S, Nakanishi K, et al. The correlation between fluid distribution and swelling or subjective symptoms of the trunk in lymphedema patients: a preliminary observational study. Lymphat Res Biol. 2021;19(3):269-273.
- 225. 225. Allam O, Park KE, Chandler L, et al. The impact of radiation on lymphedema: a review of the literature. Gland Surg. 2020;9(2):596.
- 226. 226. Vignes S. Genital lymphedema after cancer treatment: A narrative review. Cancers (Basel). 2022;14(23):1-12.
- 227. Zvonik M, Foldi E, Felmerer G. The effects of reduction operation with genital lymphedema on the frequency of erysipelas and the quality of life. Lymphology. 2011;44(3):121-130.
- 228. 228. Yamamoto T, Koshima I, Yoshimatsu H, Narushima M, Miahara M, Iida T. Simultaneous multisite lymphaticovenular anastomoses for primary lower extremity and genital lymphoedema complicated with severe lymphorrhea. J Plast Reconstr aesthetic Surg. 2011;64(6):812-815.
- 229. 229. Lasinski BB. Complete decongestive therapy for treatment of lymphedema. In: Seminars in Oncology Nursing. Vol 29. Elsevier; 2013:20-27.
- 230. 230. Chen WF, Pandey SK, Lensing JN. Does Liposuction for Lymphedema Worsen Lymphatic Injury? Lymphology. 2023;56(1):3-12.
- 231. 231. Rafn BS, Bodilsen A, von Heymann A, et al. Examining the efficacy of treatments for arm lymphedema in breast cancer survivors: an overview of systematic reviews with meta-analyses. EClinicalMedicine. 2024;67.
- 232. 232. Liang M, Chen Q, Peng K, et al. Manual lymphatic drainage for lymphedema in patients after breast cancer surgery: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2020;99(49):e23192.
- 233. Z33. Koelmeyer LA, Thompson BM, Mackie H, et al. Personalizing conservative lymphedema management using indocyanine green-guided manual lymphatic drainage. Lymphat Res Biol. 2021;19(1):56-65.
- 234. 234. Donahue PMC, Crescenzi R, Scott AO, et al. Bilateral changes in deep tissue environment after manual lymphatic drainage in patients with breast cancer treatment-related lymphedema. Lymphat Res Biol. 2017;15(1):45-56.
- 235. 235. Lopera C, Worsley PR, Bader DL, Fenlon D. Investigating the short-term effects of manual lymphatic drainage and compression garment therapies on lymphatic function using near-infrared imaging. Lymphat Res Biol. 2017;15(3):235-240.
- 236. Polo KM, Rundquist PJ, Krumdick ND, Gamble GL. National Survey of Lymphedema Therapists' Dosing of Complete Decongestive Therapy in Breast Cancer Survivors with Lymphedema. *Internet J Allied Heal Sci Pract*. 2018;16(1):5. https://nsuworks.nova.edu/ijahsp/vol16/iss1/5. Accessed March 21, 2018.
- 237. Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. *J Physiol*. 2016;594(20):5749-5768.
- 238. Huang T-W, Tseng S-H, Lin C-C, et al. Effects of manual lymphatic drainage on breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials. *World J Surg Oncol.* 2013;11:1-8.

- 239. Gradalski T, Ochalek K, Kurpiewska J, et al. Complex Decongestive Lymphatic Therapy With or Without Vodder II Manual Lymph Drainage in More Severe Chronic Postmastectomy Upper Limb Lymphedema: A Randomized Noninferiority Prospective Study. J Pain Symptom Manage. 2015;50(6):750-757. doi:10.1016/j.jpainsymman.2015.06.017
- 240. Xing W, Duan D, Ye C, et al. Effectiveness of manual lymphatic drainage for breast cancer-related lymphoedema: an overview of systematic reviews and meta-analyses. Eur J Gynaecol Oncol. 2023;44(1).
- 241. Kasseroller RG, Brenner E. Effectiveness of manual lymphatic drainage in intensive phase I therapy of breast cancer–related lymphedema—a retrospective analysis. Support Care Cancer. 2024;32(1):5.
- 242. Ezzo J, Manheimer E, McNeely ML, et al. Manual lymphatic drainage for lymphedema following breast cancer treatment. Cochrane database Syst Rev. 2015;5. doi:10.1002/14651858.CD003475.pub2
- 243. Tan I-C, Maus EA, Rasmussen JC, et al. Assessment of lymphatic contractile function after manual lymphatic drainage using near-infrared fluorescence imaging. Arch Phys Med Rehabil. 2011;92(5):756-764.
- 244. Tsai K-Y, Liao S-F, Chen K-L, Tang H-W, Huang H-Y. Effect of early interventions with manual lymphatic drainage and rehabilitation exercise on morbidity and lymphedema in patients with oral cavity cancer. Medicine (Baltimore). 2022;101(42):e30910.
- 245. Anuszkiewicz K, Jankau J, Kur M. What do we know about treating breast-cancer-related lymphedema? Review of the current knowledge about therapeutic options. Breast Cancer. 2023;30(2):187-199.
- 246. Rajendran S, Anand SC. Advanced textiles for wound compression. In: Advanced Textiles for Wound Care. Elsevier; 2019:169-192.
- 247. Provencher A-M, Giguere-Lemieux E, Croteau E, et al. The use of manual lymphatic drainage on clinical presentation of musculoskeletal injuries: a systematic review. Complement Ther Clin Pract. 2021;45(101469):1-11. doi:10.1016/j.ctcp.2021.101469
- 248. Zasadzka E, Trzmiel T, Kleczewska M, Pawlaczyk M. Comparison of the effectiveness of complex decongestive therapy and compression bandaging as a method of treatment of lymphedema in the elderly. Clin Interv Aging. 2018:929-934.
- 249. Oh SH, Ryu SH, Jeong HJ, Lee JH, Sim Y-J. Effects of different bandaging methods for treating patients with breast cancer-related lymphedema. Ann Rehabil Med. 2019;43(6):677-685.
- 250. Shaitelman SF, Cromwell KD, Rasmussen JC, et al. Recent progress in the treatment and prevention of cancer-related lymphedema. CA Cancer J Clin. 2015;65(1):55-81.
- 251. Tidhar D, Keren E, Brandin G, Yogev M, Armer JM. Effectiveness of compression bandaging education for wound care nurses. J Wound Care. 2017;26(11):625-631.
- 252. Hara H, Yoshida M, Ikehata N, et al. Compression pressure variability in upper limb multilayer bandaging applied by lymphedema therapists. Lymphat Res Biol. 2021;19(4):378-382.
- 253. Ning J, Ma W, Fish J, et al. Interface pressure changes under compression bandages during period of wearing. J Vasc Surg Venous Lymphat Disord. 2021;9(4):971-976.
- 254. Chassagne F, Badel P, Molimard J. Lower leg compression and its biomechanical effects on the soft tissues of the leg. In: Innovations and Emerging Technologies in Wound Care. Elsevier; 2020:55-85.

- 255. Qin Y. Medical bandages and stockings. Med Text Mater. 2016:109-122. doi:doi:10.1016/B978-0-08-100618-4.00008-X
- 256. Santandrea S, Benassi M, Tedeschi R. Comparison of short-stretch bandage and long-stretch bandage for post-traumatic hand edema. Int J Surg Case Rep. 2023;111:108854.
- 257. Kumar B, Das A, Alagirusamy R. Assessment of dynamic stiffness index. In: Science of Compression. New Delhi: Woodhead Publishing India PVT LTD; 2014:90-101.
- 258. Kumar B, Das A, Alagirusamy R. Characterization of compression bandage. In: Science of Compression. New Delhi: Woodhead Publishing India PVT LTD; 2014:20-40.
- 259. Kumar B, Das A, Alagirusamy R. Compression under dynamic state. In: Science of Compression. New Delhi: Woodhead Publishing India PVT LTD; 2014:75-89.
- 260. Moffatt C. Variability of pressure provided by sustained compression. Int Wound J. 2008;5(2):259-265.
- 261. Partsch H. Compression therapy in venous leg ulcers. In: Shortell C, Markovic J, eds. Venous Ulcers. Second. San Diego: Elsevier; 2023:201-216. https://doi.org/10.1016/B978-0-323-90610-4.01001-6.
- 262. Inghammar M, Rasmussen M, Linder A. Recurrent erysipelas-risk factors and clinical presentation. BMC Infect Dis. 2014;14:1-6.
- 263. Fife CE, Farrow W, Hebert AA, et al. Skin and wound care in lymphedema patients: a taxonomy, primer, and literature review. Adv Skin Wound Care. 2017;30(7):305-318.
- 264. Bowman C, Rockson SG. The Role of Inflammation in Lymphedema: A Narrative Review of Pathogenesis and Opportunities for Therapeutic Intervention. Int J Mol Sci. 2024;25(7):3907.
- 265. Ong BS, Dotel R, Ngian VJJ. Recurrent cellulitis: who is at risk and how effective is antibiotic prophylaxis? Int J Gen Med. 2022;15:6561.
- 266. Arsenault K, Rielly L, Wise H. Effects of complete decongestive therapy on the incidence rate of hospitalization for the management of recurrent cellulitis in adults with lymphedema. Rehabil Oncol. 2011;29(3):14-20.
- 267. Gençay Can A, Ekşioğlu E, Çakçı FA. Early detection and treatment of subclinical lymphedema in patients with breast cancer. Lymphat Res Biol. 2019;17(3):368-373.
- 268. Ammitzbøll G, Johansen C, Lanng C, et al. Progressive resistance training to prevent arm lymphedema in the first year after breast cancer surgery: results of a randomized controlled trial. Cancer. 2019;125(10):1683-1692.
- 269. Wanchai A, Armer JM. Effects of weight-lifting or resistance exercise on breast cancer-related lymphedema: a systematic review. *Int J Nurs Sci.* 2019;6(1):92-98.
- 270. Zhang X, Brown JC, Paskett ED, Zemel BS, Cheville AL, Schmitz KH. Changes in arm tissue composition with slowly progressive weight-lifting among women with breast cancer-related lymphedema. *Breast Cancer Res Treat*. 2017;164:79-88.
- 271. Wang L, Shi YX, Wang TT, Chen KX, Shang SM. Breast cancer-related lymphoedema and resistance exercise: An evidence-based review of guidelines, consensus statements and systematic reviews. *J Clin Nurs*. 2023;32(9-10):2208-2227.
- 272. Gülören G, Doğan Y, Özgül S, et al. Acute Effects of Remedial Exercises with and without Compression on Breast-Cancer-Related Lymphedema. In: *Healthcare*. Vol 11. MDPI; 2023:2949.
- 273. Moseley AL, Piller NB, Carati CJ. The effect of gentle arm exercise and deep breathing on secondary arm lymphoedema. *Lymphology*. 2005;38(3):136-145.

- 274. Hwang WT, Chung SH, Chung MS, Lee KH, Kim T. Effect of proprioceptive neuromuscular facilitation D2 flexion and breathing exercises on lymphedema without a short stretch compression bandage. J Phys Ther Sci. 2015;27(10):3341-3343.
- 275. Wang J, Ma J, Zhang Y, et al. The rehabilitation efficacy of diaphragmatic breathing combined with limb coordination training for lower limb lymphedema following gynecologic cancer surgery. Front Bioeng Biotechnol. 2024;12:1392824.
- 276. Douglass J, Graves P, Gordon S. Self-care for management of secondary lymphedema: A systematic review. PLoS Negl Trop Dis. 2016;10(6). doi:doi:10.1371/journal.pntd.0004740
- 277. Torres-Ronda L, i del Alcázar XS. The properties of water and their applications for training. J Hum Kinet. 2014;44:237.
- 278. Nafai S, Crow D, Stevent-Nafai E, Ferguson H. The necessity of compression garments in managing lymphedema. J Cancer Rehabil. 2022;5(3):85-89. doi:doi:10.48252/JCR66
- 279. Ridner SH, Fu MR, Wanchai A, Stewart BR, Armer JM, Cormier JN. Self-management of lymphedema: a systematic review of the literature from 2004 to 2011. Nurs Res. 2012;61(4):291-299.
- 280. Nadal Castells MJ, Ramirez Mirabal E, Cuartero Archs J, et al. Effectiveness of lymphedema prevention programs with compression garment after lymphatic node dissection in breast cancer: a randomized controlled clinical trial. Front Rehabil Sci. 2021;2:727256.
- 281. Al Onazi MM, Campbell KL, Thompson RB, et al. Decongestive progressive resistance exercise with an adjustable compression wrap for breast cancer-related lymphoedema (DREAM): protocol for a randomised controlled trial. BMJ Open. 2022;12(4):e053165.
- 282. McNeely ML, Campbell KL, Webster M, Kuusk U, Tracey K, Mackey J. Efficacy of night-time compression for breast cancer related lymphedema (LYNC): protocol for a multi-centre, randomized controlled efficacy trial. BMC Cancer. 2016;16:1-9.
- 283. Rockson S. Lymphedema. Vasc Med. 2016;21(1):77-81. doi:10.1177/1358863X15620852
- 274. Yao M, Peng P, Ding X, Sun Q, Chen L. Comparison of Intermittent Pneumatic Compression Pump as Adjunct to Decongestive Lymphatic Therapy against Decongestive Therapy Alone for Upper Limb Lymphedema after Breast Cancer Surgery: A Systematic Review and Meta-Analysis. Breast Care (Basel). 2024;19(3):155-164.
- 285. Uzkeser H, Karatay S, Erdemci B, Koc M, Senel K. Efficacy of manual lymphatic drainage and intermittent pneumatic compression pump use in the treatment of lymphedema after mastectomy: a randomized controlled trial. Breast Cancer. 2015;22(3):300-307. doi:10.1007/s12282-013-0481-3
- 286. Shao Y, Qi K, Zhou Q-H, Zhong D-S. Intermittent pneumatic compression pump for breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials.

 Oncol Res Treat. 2014;37(4):170-174.
- 287. Mendoza E, Amsler F. Effectiveness of manual lymphatic drainage and intermittent pneumatic compression in lymphedema maintenance therapy. Vasa. 2023;52(6):423-431. doi:https://doi.org/10.1024/031-1526/a001090
- 288. Muluk SC, Hirsch AT, Taffe EC. Pneumatic compression device treatment of lower extremity lymphedema elicits improved limb volume and patient-reported outcomes. Eur J Vasc Endovasc Surg. 2013;46(4):480-487.

- 289. Padberg Jr FT, Ucuzian A, Dosluoglu H, Jacobowitz G, O'Donnell TF. Longitudinal assessment of health-related quality of life and clinical outcomes with at home advanced pneumatic compression treatment of lower extremity lymphedema. J Vasc Surg Venous Lymphat Disord. 2024:101892.
- 290. Gutierrez C, Karni RJ, Naqvi S, et al. Head and neck lymphedema: treatment response to single and multiple sessions of advanced pneumatic compression therapy. Otolaryngol Neck Surg. 2019;160(4):622-626.
- 291. Taradaj J, Halski T, Ozon M, et al. Comparison of efficacy of the intermittent pneumatic compression with various pressures in reducing the primary lower extremity venous lymphedema of menopausal patients. Menopause Rev Menopauzalny. 2013;12(6):472-477.
- 292. Phillips JJ, Gordon SJ. Intermittent pneumatic compression dosage for adults and children with lymphedema: a systematic review. Lymphat Res Biol. 2019;17(1):2-18.
- 293. Konschake W, Riebe H, Vollmer M, Jünger M. Optimisation of intermittent pneumatic compression in patients with lymphoedema of the legs. Eur J Dermatology. 2022;32(6):781-792.
- 294. Karaca-Mandic P, Hirsch AT, Rockson SG, Ridner SH. A comparison of programmable and nonprogrammable compression devices for treatment of lymphoedema using an administrative health outcomes dataset. Br J Dermatol. 2017;177(6):1699-1707.
- 295. Bailey EA, Pandey SK, Chen WF. Advances in Surgical Lymphedema Management: The Emergence and Refinement of Lymph Node-to-Vein Anastomosis (LNVA). Curr Surg Reports. 2024;12(5):83-88.
- 296. Phillips GSA, Gore S, Ramsden A, Furniss D. Lymphaticovenular anastomosis improves quality of life and limb volume in patients with secondary lymphedema after breast cancer treatment. Breast J. 2019;25(5):859-864.
- 297. Jonis YMJ, Wolfs J, Hummelink S, et al. The 6 month interim analysis of a randomized controlled trial assessing the quality of life in patients with breast cancer related lymphedema undergoing lymphaticovenous anastomosis vs. conservative therapy. Sci Rep. 2024;14(1):2238.
- 298. Coriddi M, Wee C, Meyerson J, Eiferman D, Skoracki R. Vascularized jejunal mesenteric lymph node transfer: a novel surgical treatment for extremity lymphedema. J Am Coll Surg. 2017;225(5):650-657.
- 299. Mihara M, Hara H, Furniss D, et al. Lymphaticovenular anastomosis to prevent cellulitis associated with lymphoedema. J Br Surg. 2014;101(11):1391-1396.
- 300. Bernas M, Thiadens SRJJ, Smoot B, Armer JM, Stewart P, Granzow J. Lymphedema following cancer therapy: overview and options. Clin Exp Metastasis. 2018;35(5-6):547-551. doi:10.1007/S10585-018-9899-5/TABLES/2
- 301. Meuli JN, Guiotto M, Elmers J, Mazzolai L, di Summa PG. Outcomes after microsurgical treatment of lymphedema: a systematic review and meta-analysis. Int J Surg. 2023;109(5):1360-1372.
- 302. Granzow JW. Lymphedema surgery: the current state of the art. Clin Exp Metastasis. 2018;35:553-558.
- 303. Dayan JH, Dayan E, Smith ML. Reverse lymphatic mapping: a new technique for maximizing safety in vascularized lymph node transfer. Plast Reconstr Surg. 2015;135(1):277-285.
- 304. Chen WF, Knackstedt R. Delayed distally based prophylactic lymphaticovenular anastomosis: improved functionality, feasibility, and oncologic safety? J Reconstr Microsurg. 2020;36(09):e1-e2.

- 305. Chun MJ, Saeg F, Meade A, et al. Immediate lymphatic reconstruction for prevention of secondary lymphedema: a meta-analysis. J Plast Reconstr Aesthetic Surg. 2022;75(3):1130-1141.
- 306. Coriddi M, Dayan J, Bloomfield E, et al. Efficacy of immediate lymphatic reconstruction to decrease incidence of breast cancer-related lymphedema: preliminary results of randomized controlled trial. Ann Surg. 2023;278(4):630-637.
- 307. Johnson AR, Granoff M, Fleishman A, et al. A four-year institutional experience of immediate lymphatic reconstruction. Plast Reconstr Surgery–Global Open. 2022;10(4S):30.
- 308. Brorson H, Svensson H, Norrgren K, Thorsson O. Liposuction reduces arm lymphedema without significantly altering the already impaired lymph transport. Lymphology. 1998;31(4):156-172.
- 309. Bernas M, Thiadens SRJ, Stewart P, Granzow J. Secondary lymphedema from cancer therapy. Clin Exp Metastasis. 2022;39(1):239-247.
- 310. Hoffner M, Ohlin K, Svensson B, et al. Liposuction gives complete reduction of arm lymphedema following breast cancer treatment—a 5-year prospective study in 105 patients without recurrence. Plast Reconstr Surgery–Global Open. 2018;6(8):e1912.
- 311. Karlsson T, Mackie H, Koelmeyer L, et al. Liposuction for Advanced Lymphedema in a Multidisciplinary Team Setting in Australia: 5-Year Follow-Up. Plast Reconstr Surg. 2024;153(2):482-491.
- 312. Lee M, Perry L, Granzow J. Suction assisted protein lipectomy (SAPL) even for the treatment of chronic fibrotic and scarified lower extremity lymphedema. Lymphology. 2016;49(1):36-41.
- 313. Karlsson T, Hoffner M, Ohlin K, Svensson B, Brorson H. Complete Reduction of Leg Lymphedema after Liposuction: A 5-Year Prospective Study in 67 Patients without Recurrence. Plast Reconstr Surgery–Global Open. 2023;(12):e5429.
- 314. Walker J, Tanna S, Roake J, Lyons O. A systematic review of pharmacologic and cell-based therapies for treatment of lymphedema (2010-2021). J Vasc Surg Venous Lymphat Disord. 2022;10(4):966-975.
- 315. Shetye R, Mulhern K, Subramani S, Campione E. The Effect of Pharmaceutical Agents on Lymphedema. Rehabil Oncol. 2023;41(3):160-162.
- 316. Sheikhi-Mobarakeh Z, Yarmohammadi H, Mokhatri-Hesari P, Fahimi S, Montazeri A, Heydarirad G. Herbs as old potential treatments for lymphedema management: A systematic review. Complement Ther Med. 2020;55:102615.
- 317. Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. *Cancers (Basel)*. 2020;12(7):1959.
- 318. Brown S, Dayan JH, Coriddi M, McGrath L, Kataru RP, Mehrara BJ. Doxycycline for the treatment of breast cancer-related lymphedema. *Front Pharmacol*. 2022;13:1028926.
- 319. Mand S, Debrah AY, Klarmann U, et al. Doxycycline improves filarial lymphedema independent of active filarial infection: a randomized controlled trial. *Clin Infect Dis.* 2012;55(5):621-630.
- 320. Rockson SG, Tian W, Jiang X, et al. Pilot studies demonstrate the potential benefits of antiinflammatory therapy in human lymphedema. *JCI insight*. 2018;3(20).
- 321. Harvie M, Livingstone K, McMulllan D, et al. BE-WEL trial (breast: evaluation of weight and exercise for lymphoedema) testing weight control and exercise programmes for women with breast cancer related lymphoedema: a feasibility trial. *Breast Cancer Res Treat*. 2024;207(1):203-212.
- 322. Tsai C-L, Hsu C-Y, Chang W-W, Lin Y-N. Effects of weight reduction on the breast cancer-related lymphedema: A systematic review and meta-analysis. *The Breast*. 2020;52:116-121.

- 323. Schmitz KH, Troxel AB, Dean LT, et al. Effect of home-based exercise and weight loss programs on breast cancer–related lymphedema outcomes among overweight breast cancer survivors: The WISER Survivor randomized clinical trial. JAMA Oncol. 2019;5(11):1605-1613.
- 324. Cavezzi A, Urso SU, Ambrosini L, Croci S, Campana F, Mosti G. Lymphedema and nutrition: A review. Veins Lymphat. 2019;8(1).
- 325. Bonetti G, Dhuli K, Michelini S, et al. Dietary supplements in lymphedema. J Prev Med Hyg. 2022;63(2 Suppl 3):E200.
- 326. Lodewijckx I, Matthys C, Verheijen J, et al. Potential therapeutic effect of a ketogenic diet for the treatment of lymphoedema: Results of an exploratory study. J Hum Nutr Diet. 2024;37(4):885-891.
- 327. Saneei Totmaj A, Haghighat S, Jaberzadeh S, et al. The Effects of Synbiotic supplementation on serum anti-inflammatory factors in the survivors of breast Cancer with Lymphedema following a low calorie Diet: a Randomized, Double-Blind, clinical trial. Nutr Cancer. 2022;74(3):869-881.
- 328. Thu MS, Ondee T, Nopsopon T, et al. Effect of probiotics in breast cancer: a systematic review and meta-analysis. Biology (Basel). 2023;12(2):280.
- 329. Vafa S, Zarrati M, Malakootinejad M, et al. Calorie restriction and synbiotics effect on quality of life and edema reduction in breast cancer-related lymphedema, a clinical trial. The Breast. 2020;54:37-45.
- 330. Teo I, Coulborn A, Munnoch DA. Use of the HIVAMAT® 200 with manual lymphatic drainage in the management of lower limb lymphoedema and lipoedema. J Lymphoedema. 2016;11(1):49-53.
- 331. Jahr S, Schoppe B, Reisshauer A. Effect of treatment with low-intensity and extremely low-frequency electrostatic fields (DEEP OSCILLATION®) on breast tissue and pain in patients with secondary breast lymphoedema. J Rehabil Med. 2008;40(8):645-650.
- 332. Lampinen R, Lee JQ, Leano J, et al. Treatment of Breast Cancer–Related Lymphedema Using Negative Pressure Massage: A Pilot Randomized Controlled Trial. Arch Phys Med Rehabil. 2021;102(8):1465-1472.
- 333. Malloizel-Delaunay J, Weyl A, Brusq C, et al. New Strategy for Breast Cancer Related Lymphedema Treatment by Endermology: ELOCS Phase II Randomized Controlled Trial. Clin Breast Cancer. 2024;24(6). doi:10.1016/J.CLBC.2024.05.009
- 334. Kim JK, Loo C, Kim JS, Pranskevich C, Gordon OK. Can Acupuncture be a Part of the Treatment for Breast Cancer-Related Lymphedema? A Systematic Review of the Safety and Proposed Model for Care. Lymphology. 2023;56(1):27-39.
- 335. Wang L, Du X, Hu P, Zhang Y, Yao M, Che X. Quality of evidence supporting the role of acupuncture for breast cancer-related lymphoedema: an overview of systematic reviews and meta-analyses. J Cancer Res Clin Oncol. 2023;149(18):16669-16678.
- 336. Bao T, Iris Zhi W, Vertosick EA, et al. Acupuncture for breast cancer-related lymphedema: a randomized controlled trial. Breast Cancer Res Treat. 2018;170:77-87.
- 337. Xu Y, Yu J, Shen R, Shan X, Zhou W, Wang J. Comparison efficacy and safety of acupuncture and moxibustion therapies in breast cancer-related lymphedema: A systematic review and network meta-analysis. PLoS One. 2024;19(5):e0303513.
- 338. Wang S, Zhang F, Tang H, Ning W. The efficacy and safety of acupuncture and moxibustion for breast cancer lymphedema: a systematic review and network meta-analysis. Gland Surg. 2023;12(2):215.

- 339. Wang C, Yang M, Fan Y, Pei X. Moxibustion as a Therapy for Breast Cancer–Related Lymphedema in Female Adults: A Preliminary Randomized Controlled Trial. Integr Cancer Ther. 2019;18:1-9. doi:10.1177/15347354419866919
- 340. Yang F-A, Wu P-J, Su Y-T, Strong P-C, Chu Y-C, Huang C-C. Effect of kinesiology taping on breast cancer-related lymphedema: A systematic review and meta-analysis of randomized controlled trials. Clin Breast Cancer. 2024;24(6):541-551. doi:https://doi.org/10.1016/j.clbc.2024.04.013
- 341. Kasawara KT, Mapa JMR, Ferreira V, et al. Effects of Kinesio Taping on breast cancer-related lymphedema: A meta-analysis in clinical trials. Physiother Theory Pract. 2018;34(5):337-345.
- 342. Gatt M, Willis S, Leuschner S. A meta-analysis of the effectiveness and safety of kinesiology taping in the management of cancer-related lymphoedema. Eur J Cancer Care (Engl). 2017;26(5):e12510. doi:10.1111/ecc.12510
- 343. Atar S, Atar Y, Sari H, et al. Efficacy of kinesio taping on mutational falsetto: a double blind, randomized, Sham-controlled trial. J Voice. 2023;37(6):968-e1.
- 344. e Lima MTBRM, e Lima JGM, de Andrade MFC, Bergmann A. Low-level laser therapy in secondary lymphedema after breast cancer: systematic review. Lasers Med Sci. 2014;29:1289-1295.
- 345. Baxter GD, Liu L, Petrich S, et al. Low level laser therapy (Photobiomodulation therapy) for breast cancer-related lymphedema: a systematic review. BMC Cancer. 2017;17:1-13.
- 346. Chiu S-T, Lai U-H, Huang Y-C, Leong C-P, Chen P-C. Effect of various photobiomodulation regimens on breast cancer-related lymphedema: A systematic review and meta-analysis. Lasers Med Sci. 2023;39(1):11.
- 347. Farhan F, Samei M, Abdshah A, et al. Investigation of the effect of Low-Level Laser Therapy on arm lymphedema in breast cancer patients: A noninvasive treatment for an intractable morbidity. Heal Sci Reports. 2023;6(5):e1261.
- 348. Yilmaz SS, Ayhan FF. The randomized controlled study of low-level laser therapy, kinesio-taping and manual lymphatic drainage in patients with stage II breast cancer-related lymphedema. Eur J Breast Heal. 2023;19(1):34.
- 349. Wang Y, Ge Y, Xing W, et al. The effectiveness and safety of low-level laser therapy on breast cancer-related lymphedema: An overview and update of systematic reviews. Lasers Med Sci. 2022;37(3):1389-1413.
- 350. Huang H, Lin J, Dai Z, Zeng M, Li S, Zheng H. Lumbar sympathetic ganglion block for cancer-associated secondary lower limb lymphedema: a retrospective study. Pain Physician. 2022;25(8):E1269.
- 351. Feigin G, Velasco Figueroa S, Englesakis MF, D'Souza R, Hoydonckx Y, Bhatia A. Stellate ganglion block for non-pain indications: a scoping review. Pain Med. 2023;24(7):775-781.
- 352. Forte AJ, Boczar D, Huayllani MT, Lu X, McLaughlin SA. Sympathetic nerve block in lymphedema treatment: a systematic review. Cureus. 2019;11(9).
- 353. Choi E, Nahm FS, Lee P-B. Sympathetic Block as a New Treatment for Lymphedema. *Pain Physician*. 18(4):365-372. http://www.ncbi.nlm.nih.gov/pubmed/26218940. Accessed September 27, 2016.
- 354. Kim J-G, Bae SO, Seo KS. A comparison of the effectiveness of complex decongestive physiotherapy and stellate ganglion block with triamcinolone administration in breast cancer-related lymphedema patients. *Support Care Cancer*. 2015;23:2305-2310.

- 355. Seo KS. Effects of stellate ganglion block on breast cancer-related lymphedema: comparison of various injectates. Pain Physician. 2015;18:93-99.
- 356. Park MW, Shi-Uk L, Kwon S, Seo KS. Comparison between the effectiveness of complex decongestive therapy and stellate ganglion block in patients with breast cancer-related lymphedema: a randomized controlled study. Pain Physician. 2019;22(3):255.
- 357. Tsai YL, I TJ, Chuang YC, Cheng YY, Lee YC. Extracorporeal shock wave therapy combined with complex decongestive therapy in patients with breast cancer-related lymphedema: A systemic review and meta-analysis. J Clin Med. 2021;10(24):5970.
- 358. Miccinilli S, Bravi M, Maselli M, et al. The effectiveness of extracorporeal shock wave therapy on breast cancer-related lymphedema: A literature review. Lymphology. 2020;53(3):118-135.
- 359. Bae H, Kim HJ. Clinical outcomes of extracorporeal shock wave therapy in patients with secondary lymphedema: a pilot study. Ann Rehabil Med. 2013;37(2):229-234.
- 360. Lee KW, Kim SB, Lee JH, Kim YS. Effects of extracorporeal shockwave therapy on improvements in lymphedema, quality of life, and fibrous tissue in breast cancer-related lymphedema. Ann Rehabil Med. 2020;44(5):386-392.
- 361. Kubo M, Li T-S, Kamota T, Ohshima M, Shirasawa B, Hamano K. Extracorporeal shock wave therapy ameliorates secondary lymphedema by promoting lymphangiogenesis. J Vasc Surg. 2010;52(2):429-434.
- 362. Yena KIM, Haneul LEE. The effect of myofascial release in patients with breast cancer-related lymphedema: A cross-over randomized controlled trial. Eur J Phys Rehabil Med. 2023;59(1):85.
- 363. Hemmati M, Rojhani-Shirazi Z, Zakeri ZS, Akrami M, Salehi Dehno N. The effect of the combined use of complex decongestive therapy with electrotherapy modalities for the treatment of breast cancer-related lymphedema: a randomized clinical trial. BMC Musculoskelet Disord. 2022;23(1):837.
- 364. Belmonte R, Tejero M, Ferrer M, et al. Efficacy of low-frequency low-intensity electrotherapy in the treatment of breast cancer-related lymphoedema: a cross-over randomized trial. Clin Rehabil. 2012;26(7):607-618.
- 365. Cau N, Cimolin V, Aspesi V, et al. Preliminary evidence of effectiveness of TECAR in lymphedema. Lymphology. 2019;52(1):35-43.
- 366. Çakıt BD, Vural SP. Short-Term Effects Of Dry Heat Treatment (Fluidotherapy) In The Management Of Breast Cancer Related Lymphedema: A Randomized Controlled Study. Clin Breast Cancer. 2024;24(5):439-446.
- 367. Narahari. Integrative treatment for filarial lymphoedema. Br J Dermatol. 2023;190(1):e10-e10.
- 368. Narahari SR, Aggithaya MG, Ryan TJ, et al. Self-care treatment for lymphoedema of lymphatic filariasis using integrative medicine. Br J Dermatol. 2024;190(1):94-104.
- 369. Krishnasastry S, Mackenzie CD. Alternative approaches to lymphoedema care in lymphatic filariasis. PLoS Negl Trop Dis. 2021;15(4):e0009293.
- 370. Singal A, Bisherwal K. Integrative medicine and self-care in the treatment of lymphatic filariasis-associated lymphoedema: an effective strategy! Br J Dermatol. 2024;190(1):8-9. doi:10.1093/bjd/ljad374
 - © 2025 National Lymphedema Network, Inc. All rights reserved. This publication may not be reproduced, distributed, or transmitted in any form or by any means without prior written permission, except for personal educational use, including printing for individual study or reference.

 For all other uses, please contact nln@lymphnet.org.