

Converting ad hoc terminologies to SNOMED CT extensions

M.J. Lawley, D. Vickers, D.P. Hansen The Australian E-Health Research Centre, CSIRO ICT Centre, Brisbane, Australia Aug 2008

Goal

Better tool support for consistent querying of health data from multiple sources

Surgery

PersonID

DateDiagnosis

DateSurgery

Procedure

Surgeon

ProcedurePerformed

Procedure

Right hemicolectomy Ext right hemicolectomy

Left hemicolectomy

Sigmoid colectomy

Total colectomy

Subtotal colectomy

Proctocolectomy

High AR

Low AR

Ultralow AR

APR

Hartmanns

Other

Procedure

MRN

EpisodeNo

ProcedureCode

ProcedureCode

Surgical Procedures

32003-00 (Sig colectomy)

32000-00 (Sig colectomy)

32003-01 (Right hemicolectomy)

32000-01 (Right hemicolectomy)

32005-01 (Ext right hemicolectomy)

32004-01 (Ext right hemicolectomy)

32006-00 (Left hemicolectomy)

32006-01 (Left hemicolectomy)

32005-00 (Subtotal colectomy)

32004-00 (Subtotal colectomy)

32012-00 (Total colectomy with

32009-00 ileorectal anastomosis)

32015-00 (Total colectomy with

32051-00 proctocolectomy +/- ileoanal 32051-01

reservoir/ pouch procedure)

32030-00 (Hartmann's procedure)

32024-00 (High anterior resection)

32025-00 (Low anterior resection) 32026-00 (Low anterior resection)

32028-00 (Ultra low anterior resection)

32099-00 (Other procedure on rectum)

32108-00 (Other procedure on rectum)

32039-00 (Abdomino-perineal excision)

32029-00 (Formation of colonic J pouch)

Querying

- Need to consistently query existing health data
- Data uses controlled vocabularies with unspecified (or specialcased) semantic relationships
 - 32003-00 Sig colectomy with *anastomosis*
 - 32003-01 Right hemicolectomy
 - 32012-00 Total colectomy
- Queries of data need to account for these implicit relationships
 - e.g., find procedures involving a colectomy
- Leads to semantics being embedded in the queries
 - bad

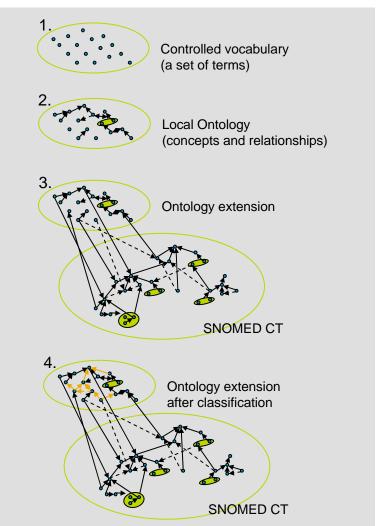
Semantics embedded in queries - bad

```
SELECT S.*
FROM Surgery S
WHERE S.procedure = '32003-00'
OR S.procedure = '32003-01'
OR S.procedure = '32012-00'
...;
```

SELECT S.*
 FROM Surgery S, ProcedureCodes C
 WHERE S.procedure = C.code
 AND C.text LIKE '%colectomy%';

Formal Ontology

- Use an ontology to make the relationships explicit
 - Approach taken by SNOMED CT
- Make these relationships available for querying
- SELECT S.*
 FROM Surgery S, Ontology O
 WHERE O.ancestor = 23968004
 AND S.procedure = O.descendant;


How to construct the ontology?

- Could start from scratch, but
 - may need to explicitly encode lots of additional relationships
 - requires good modelling expertise (as well as domain knowledge)
- Easier to build on (extend) an existing base
 - SNOMED CT
 - ~400,000 concepts
 - ~1,500,000 relationships
 - provides a path to future integration, (esp. in Australian context)
 - size can also be a problem
 - contains errors
 - Need to be careful that extension doesn't corrupt base
 - conservative extension

Steps to create a SNOMED CT extension

- examine existing terms
- look at their use in the data
 - use is the determinant for semantics
- find corresponding SNOMED CT concepts
 - or model as post-coordinated expressions
- are they equivalent or primitive?
- classify, look for problems
 - snorocket supports bottom, ⊥, and thus disjointness constraints
 - found problems with Skeletal Dysplasia terminology in REAMS
 - used "eye" for both optic nerve and bony orbital structure
- when done, export the classified extension

The impact of scale

Benefits

- breadth
- rich relationship structure
- established concept model

Costs

- sheer size is hard to manage
- standard tools struggle or can't cope
- when classification takes ~45min you don't do it often
- but...

New classification algorithm

- Polynomial-time classification algorithm published by Baader, Lutz, and Suntisrivaraporn
 - "CEL"
 - LISP, Linux only
 - ~30min
- Our implementation
 - "snorocket"
 - Java, tested on Windows, OS X, Linux (RedHat, ubuntu), Solaris
 - ~1min

```
    /usr/bin/time
/System/Library/Frameworks/JavaVM.framework/Versions/1.6/Home/bin/j
ava -Xmx2G -server -jar target/snorocket-1.1-SNAPSHOT-jar-with-
dependencies.jar --krssFile ../ontologies/snomedct-stated-2007-07-
30.krss
    66.27 real
    65.39 user
    2.16 sys
```

unoptimised incremental version of algorithm gives sub-second results

Feasibility

Essential approach has been trialled

- see "Experiences Mapping a Legacy Interface Terminology to SNOMED CT", Geraldine Wade and S. Trent Rosenbloom
- 2002 terms mapped to combination of single and post-coordinated concepts
- about 75% were equivalencies (20% of these were to single concepts)

General issues identified

- one term may be used for multiple concepts
- many relationships may not be explicitly represented/have a corresponding term
- complete concept may be composite and representationally split across multiple columns (and tables)

Future

Evaluation projects

- current
 - ANZICS Intensive Care Unit terms (APACHE III)
- future
 - Community Health
 - Patient Safety

Tool support

- editor specifically for building such extensions
 - real-time feedback via fast incremental classification
 - build in the concept model
 - pinpointing to assist debugging?
- querying integrated with (extended) ontology

Problems

- Negation
- Free text (NLP)

Australian e-Health Research Centre

Michael J Lawley Project Leader

Phone: 07 3253 3609

Email: michael.lawley@csiro.au

Web: aehrc.com/hie

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au

