

Applying Drug and Critical Term Ontologies to Australian Drug Safety Data for Adverse Event Signalling (AES) and Comparison with the Bayesian AES method MGPS

G. Saunders S. Ivkovic

School of Information Technology and Mathematical Sciences

1Centre of Informatics and Applied Optimization (CIAO)

University of Ballarat

Outline

- Drug Safety Data (Australian Adverse Drug Reaction Advisory Committee (ADRAC) database)
- Develop new Adverse Event Signalling (AES) method
 - Using Ontologies
 - Reaction Terms (System organ class—SOC, Critical Terms)
 - Drug Terms (anatomical-therapeutic-chemical classification—ATC codes)
- Comparison with the Bayesian AES method mulit-item gamma Poisson shrinker —MGPS

Motivation

- Existing signal detection methods
 - Proportional ratios too sensitive
 - Bayesian
 - too insensitive,
 - lack transparency
 - signal leakage
 - signal masking

Aims

- Develop a signal method based on ontology for drugs and reactions
- Use critical reaction terms to increase signal intensity
- Exploit ATC drug classification hierarchy
- Follow significant drug-reaction associations, by traversal of the ATC tree where reaction frequencies are significant based on Chi-Square (χ^2) test

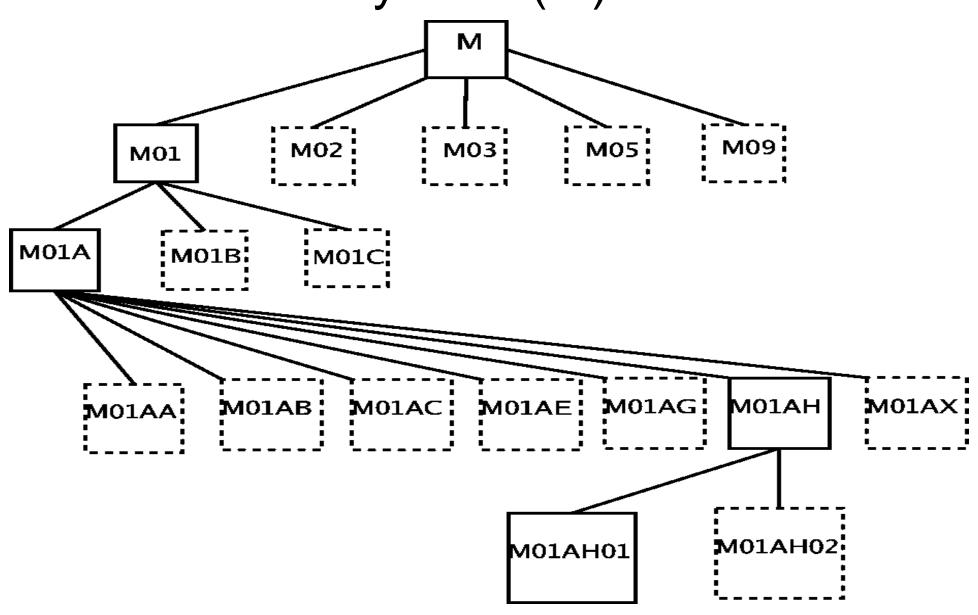
Reaction Ontology—SOC terms:

Classified into 18 reaction classes

Drug Ontology—ATC Embeded Code:

X99XX99 (pattern)

Level 0 – A (Alimentary tract) 14


Level 1 – A01 92

Level 2 – A01A 227

Level 3 – A01AA 602

Level 4 – A01AA01 1809

Tree Traversal for Musculo-skeletal system (M)

Signal Method

- Step 1: Select drug and reaction class of interest
 - E.g., Musculo-skeletal system (M) and cardiovascular (SOC 1000)
- **Step2**: Find set of children in drug tree; test to see if any children have significantly more reactions (based on Chi-Square (χ^2)
- Step 3: continue Step 2 at next level down

Signal Level

- **OK** ≤ 15% critical terms
- Notice 15 30%
- Strong notice 30 40%
- Warning 40 50%
- Strong warning 50 60%
- Alert > 60%

Results:

Our algorithm produced a total of 62 warnings: 42 **OK**, 9 **NO**, 4 **WA**, 3 **SW**, 4 **AL**

The results of MGPS were ordered by **EBGM** with the highest value of 37.585

Definition of MGPS values:

EBGM—Empirical Bayesian Geometric Mean. A more stable estimate than RR; the shrinkage estimate, computed as the geometric mean of the posterior distribution of the true RR

RR—Relative Ratio. (The same as N/E.) Observed number of cases with the combination divided by the expected number of cases with the combination

N—Observed number of cases with the combination of items

E—The expected number of cases with the combination

Table 1: Alert Warning Level

N	E	RR	EBGM	ATCcode	SOC	Drug_name	No_Sig*
29	32.875	0.882	0.886	A01AB03	Nervous	Chlorhexidine	26
401	103.919	3.859	3.842	B01AB01	Haemic&lymph	Heparin	220
229	124.574	1.838	1.794	C02AB01	Haemic&lymph	Methyldopa	177
27	4.301	6.278	5.644	G02BA01	Foetal	Plastic IUD	26

^{*} Number of signals with our algorithm for ATC/SOC pairs

Table 2: Strong Warning Level

N	Ε	RR	EBGM	ATCcode	SOC	Drug_name	No Sig
-1007			<0.00G	MO4 A □O4	Haamia O lumnh	Colonovih	105
<2887	70.470	4.600	≤0.026	M01AH01	Haemic&lymph	Celecoxib	105
123	76.476	1.608	1.546	N05AH02	Cardiovascular	Clozapine	236
150,000	11200 Cardan (100A)		4584453444		NW 95 DO 004	Meglumine	
322	113.291	2.842	2.829	V08AA20	Respiratory	diatrizoate	188

Table 3: Warning Level

N	E	RR	EBGM	ATCcode	SOC	Drug_name	No Sig
		(5)				Comb. Specific	
236	210.479	1.121	1.113	J06BB30	Nervous	immunoglobulins	690
537	113.134	4.747	4.727	J01CF05	Liver	Flucloxacillin	267
7		81 (8)		3			
<2887			≤0.026	M01AH01	Cardiovascular	Celecoxib	282
264	35.842	7.366	7.265	N05AH02	Haemic&lymph	Clozapine	587

Conclusion

- There is no correspondence between the signal levels we defined and the values produced by MGPS
- Our AES method is quite simplistic in its present form
- Problem could be in the SOC reaction system does not have enough levels of granularity for both AES methods
- Next plan is to make more use of association rules and the use of medical ontology, e.g., employ the MedDRA for reaction ontology, make use of a medical ontology

Contact details: g.saunders@ballarat.edu.au

Acknowledgments:

The work reported in this paper has been supported by The Australian Research Council, the TGA (Therapeutic Goods Administration), the Ballarat Division of General Practice, the Medical Software Industry Association, the Therapeutic Guidelines Pty Ltd. The authors are indebted to the TGA for making these data available. We would also like to thank Andrew Bate for making available for my research the World Health Organization Adverse Reaction Terminology (WHO-ART) Critical Term List. In addition I wish to thank Bill DuMouchel of Lincoln Technologies for running TGA data on their system that runs the Multi-item Gamma Poisson Shrinker (MGPS), and the TGA for allowing him to use their data.

References:

- Alecu, C. Bousquet, F. Mougin, and M. C. Jaulent, 'Mapping of the who-art terminology on snomed ct to improve grouping of related adverse drug reactions', *Studies in Health Technology Information* 124 (2006), 833–838
- Manfred Hauben and Xiaofeng Zhou, 'Quantitative methods in pharmacovigilance: focus on signal detection', *Drug Safety* 26 (2003), no. 3, 159–186
- Gary Saunders, Sasa Ivkovic, Ranadhir Ghosh, and John Yearwood, 'Applying anatomical therapeutic chemical (ATC) and critical term ontologies to Australian drug safety data for association rules and adverse event signalling', *Proceedings of the Australasian Ontology Workshop* (AOW 2005) (Sydney, Australia) (Thomas Meyer and Mehmet A. Orgun, eds.), Advances in Ontologies, vol. 58, The 18th Australian Joint Conference on Arti⁻ cial Intelligence, Australian Computer Society, December 2005, pp. 93–98