### **Benefits Measurement**

Automated Anaesthetics Record Keeping



## Introducing

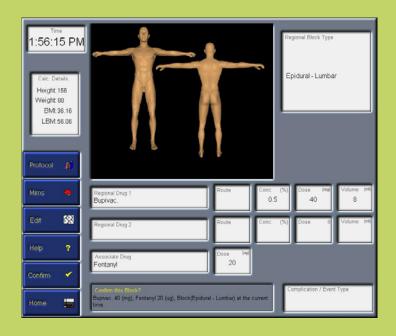
Mary Galvin ~ Queensland Health
 AARK Project Director
 Dip.Prog.Technology; BA(Maths/Econ.Stats); BA(Hum);
 B.A.Hons.(Classics); PhD

Sue McLellan ~ Communio
 Senior Consultant
 MBA, B.Bus (HA), RN

## Background ~ literature, history, studies

#### Potential benefits

| Greater accuracy                               | Ferrari 1989;<br>Kalli, Partanen & Hermunen 2002 |
|------------------------------------------------|--------------------------------------------------|
| Increased legibility                           | Gravenstein 1989                                 |
| Greater consistency                            | Ream 1989                                        |
| Reduced record keeping times                   | Weinger, Herndon & Gaba 1997                     |
| Improved quality assurance and risk management | Edsall 1991; Petry 1998                          |
| An aid for medico-legal defence                | Gibbs 1989                                       |
| Provision of data for research                 | Stanley 1991                                     |


#### Potential drawbacks

| User acceptance of technology in the perioperative environment | Block 1989;<br>Block, Reynolds & McDonald 1998;<br>Minic, Block & McDonald 1989 |
|----------------------------------------------------------------|---------------------------------------------------------------------------------|
| Time consumed by the anaesthetist-machine interface            | Allard et al. 1995                                                              |

## **Objectives**

QH Objectives





Study Objectives

## Methodology

- Design
- Conduct
- Team



# Design

Measurement indicators

- Checklist for
  - -OR
  - -PACU



Survey

### Checklist for OR/PACU

### Sequence of:

- Patient arrival
- Patient induction
- Commencement of surgery
- Completion of surgery
- Awakening
- Leaving the OR
- Arrive/Depart PACU



### Conduct

#### 2 Phases:

- Before implementation of AARK
- After implementation of AARK
  - minimum 6 months



#### **Team**

- Same Measurement Team- both clinicians with experience in OR/PACU
- Joint observations for standardisation on Day 1 in each hospital
- Cross correlation twice daily
- Same day analysis of results



### Analysis of observations/measurements

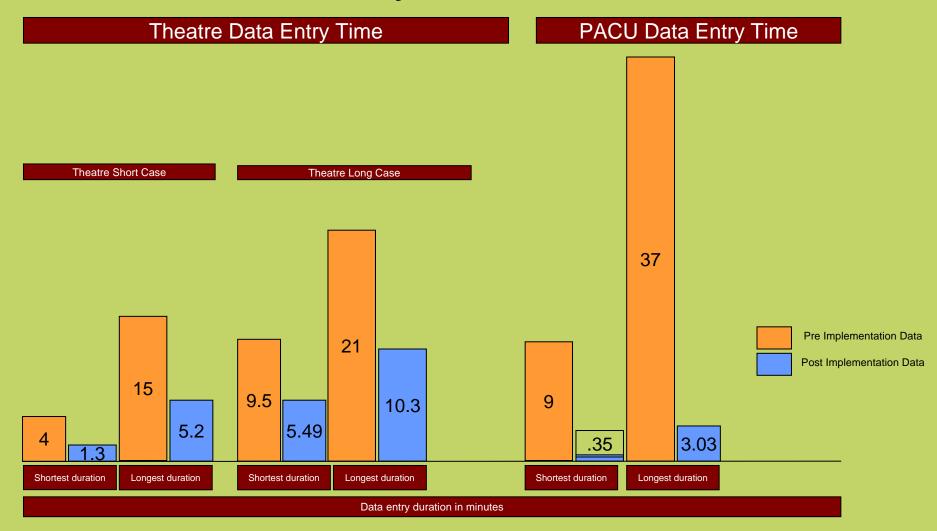
## Case Sampling

- Short duration
- Medium duration
- Long duration



### Results – Short cases

| Pre-implementation (Hospital 1)        | Post-implementation (Hospitals 1 & 2)                 |                                                     |
|----------------------------------------|-------------------------------------------------------|-----------------------------------------------------|
| Data Entry Duration Summary (Minutes): | Data Entry Duration Summary (Minutes):                |                                                     |
| Hospital 1: Pre-implementation         | Hospital 1:Post 6 months                              | Hospital 2-:Post 8 years                            |
| Longest Duration = 15                  | Longest duration = 5.20                               | Longest duration = .19                              |
| Shortest duration = 4.0                | Shortest duration = 1.30                              | Shortest duration = .15                             |
| Average duration = 9.5                 | Average Duration = 2.43 (74.22% reduction data entry) | Average Duration = .16 (93.3% reduction data entry) |


### Results – Medium Cases

| Pre-implementation (Hospital 1)        | Post-implementation (Hospital 1)                         |
|----------------------------------------|----------------------------------------------------------|
| Data Entry Duration Summary (Minutes): | Data Entry Duration Summary (Minutes):                   |
| Longest Duration = 12.5                | Longest duration = 8.30                                  |
| Shortest duration = 8.0                | Shortest duration = .58                                  |
| Average duration = 10.5                | Average Duration = 4.33 (58.76% reduction in data entry) |

# Results – Long Cases

| Pre-implementation (Hospital 1)        | Post-implementation (Hospital 1)                         |
|----------------------------------------|----------------------------------------------------------|
| Data Entry Duration Summary (Minutes): | Data Entry Duration Summary (Minutes):                   |
| Longest Duration = 21.0                | Longest duration = 10.30                                 |
| Shortest duration = 9.5                | Shortest duration = 5.49                                 |
| Average duration = 14                  | Average Duration = 7.27 (48.07% reduction in data entry) |

## **Results Summary**



## **Implications**

 Time savings for anaesthetists





 Time savings for nursing staff

Greater benefits for manual sites > early automation

#### What Next?

- Now
  - Baseline measurement three more hospitals
- Imminent
  - Ongoing rollout
- Future
  - Further analysis of results
    - Time
    - Quality, legibility, completeness
    - Other realisable benefits?

### Conclusion

- Acknowledgements for support and facilitation of the study:
  - Associate Professor Michael Steyn (RBWH)
  - Dr Peter Moran (PAH)
  - Associate Professor Dr John Archdeacon (CBH)
- Contacts
  - Ms Sue McLellan ~ Communio ~ <u>sue.mclellan@communio.com.au</u>
  - Dr Mary Galvin ~ Qld Health ~ mary galvin@health.qld.gov.au

