Tribal Cooperation and Design of a Multi-Objective Fish Passage Structure on Kelsey Creek, California

Floodplain Management Association

A Flood of Fishy Issues

September 9, 2016

Anthony Falzone, CFM
Karola Kennedy and Sarah Ryan
Kelsey Creek

• 3rd largest tributary to Clear Lake
• Watershed upstream of Main St. Bridge is 42.8 square miles
• 1 of 3 remaining Clear Lake tributaries that still support active hitch migration
Watershed Problems

- Channel incision (up to 15 ft)
- Reduced instream flows
- Barriers to hitch migration
- Decreased water quality in Clear Lake
- Increased competition
- Reduction in marshes along Clear Lake
Hitch in Peril

• Hitch population has declined due to:
 – Loss of wetland/marsh habitat
 – Blocked access to spawning locations in tributaries
 – Introduced non-native predators in Clear Lake.
 – Decrease stream flows from irrigation diversion and climate change

• Hitch are culturally significant to Pomo Indians
Hitch Listing

- CDFW listed the Clear Lake hitch as a Fish Species of Special Concern in 1995.
- Added to the California Endangered Species List in 2014.
Clear Lake Hitch

• Endemic to Clear Lake
• In the spring, hitch migrate to tributaries to spawn
• Return to the Clear Lake after spawning
• Millions of spawners reduced to only a few thousand primarily in Abode and Kelsey creeks
• "unimaginably abundant" hitch once clogged tributaries with spectacular spawning runs
Main Street Bridge

- Historical bridge design that is rare in California
- Seismically upgraded
- Existing fish ladder never worked and is currently undermined at downstream extent
- Main Street Bridge grade control structure prevents the use of two miles of habitat
- Hitch blocked from critical pools upstream of the bridge
Tribal Self Governance

• Tribes are sovereign nations
• Tribes have built capacity for watershed restoration, water quality standards, nonpoint source management, and are treated in the same manner as a state by the US EPA
• Tribal watershed management plans were shared between different tribes to facilitate goals of barrier removal
Tribal Cooperation

- Hitch are culturally significant for all tribes surrounding Clear Lake
- Shared watershed based approach to restoration
- Matched funding from one tribe for design of a project in another tribe’s ancestral territory
- Balance goals and objectives between tribes, county, state, and federal governments
Big Valley Rancheria

- Federally recognized Tribe located on shores of Clear Lake, 350 acres in size, 1000+ members. Ancestral boundaries incorporate all of
- Water people, Tribal use of the lake and streams to practice culture and subsistence
- Clear Lake hitch projects: water quality monitoring in streams, collaborative tagging projects, support of barrier removals
Hitching
Elem Tribe

- Elem Indian Colony 50 acres on shores of Clear Lake, approximately 100 members. Adjacent to Sulphur Bank Mercury Mine. Ancestral territory – parts of Cache Creek region, city of Clearlake, town of Clearlake Oaks
- Clear Lake hitch – abundant food source
- Clear Lake hitch projects – design and completion of hitch passageway on a smaller creek - collaborative project with County and State Parks included replacing failing sewer line
Multi-benefit Fish Passage Project

- Engineering and geomorphic analysis to guide design
- Prioritize alternatives to improve fish passage, enhance habitat, & preserve infrastructure
- Long term and sustainable alternative
- Collaborate with stakeholders (tribes, Lake County, landowners)
Design Constraints

• Main Street Bridge
 – Historical bridge design
 – Seismically reinforced
 – Grade control structure

• Flood conveyance
 – Adjacent residential and commercial properties
 – Downtown Kelseyville

• Hitch passage criteria
Hitch Passage Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Design Value (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td><0.03</td>
</tr>
<tr>
<td>Passage flows</td>
<td>15-200 cfs</td>
</tr>
<tr>
<td>Velocity</td>
<td>No Steps!</td>
</tr>
<tr>
<td>Depth</td>
<td>>0.5 ft</td>
</tr>
<tr>
<td>Low flow channel conveyance</td>
<td>15 cfs</td>
</tr>
<tr>
<td>Low flow channel and grade control structure</td>
<td>Width: 8 ft</td>
</tr>
<tr>
<td></td>
<td>Depth: 1 ft</td>
</tr>
</tbody>
</table>
Design Flows

• Hitch passage design flows: 15 to 200 cfs
• 100-year design flow: 11,900 cfs
Design Alternatives
Prioritization of Alternatives

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larger version of existing passage structure</td>
<td>• Decreased construction costs (shortest length and least amount of fill)</td>
<td>• Passage unlikely for design flow range (velocities likely only suitable at low flow)</td>
</tr>
<tr>
<td></td>
<td>• Limited impact on channel and riparian vegetation</td>
<td>• Existing structure failed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High maintenance likely (sediment deposition)</td>
</tr>
<tr>
<td>Separate high and low flow channels</td>
<td>• Passage (easier to design for smaller range of flows in the high and low flow channel)</td>
<td>• Attraction flow from high and low flow channel may confuse hitch</td>
</tr>
<tr>
<td>Meandering multi-stage channel</td>
<td>• Natural form (follows the thalweg)</td>
<td>• Sediment deposition in bends</td>
</tr>
<tr>
<td></td>
<td>• Complex channel provides better habitat</td>
<td>• Increased maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Most expensive alternative to construct</td>
</tr>
<tr>
<td>Straight, multi-stage, roughened ramp</td>
<td>• Flushes sediment though the channel</td>
<td>• Excess velocity</td>
</tr>
<tr>
<td></td>
<td>• Lower construction costs than meandering channel and high and low flow channel alternatives</td>
<td>• Limited channel complexity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Low aesthetic value</td>
</tr>
</tbody>
</table>
Preferred Alternative

- A straight, roughened, multi-stage channel with no steps
- Slope not to exceed 3%
- Low flow channel 8 ft wide x 1 ft deep
- Grade control structure retained to prevent undermining of the Main Street Bridge
- Large boulders placed upstream of the low flow channel to provide channel bed stability and prevent debris from clogging the low flow channel
Roughened Ramp Slope

Existing and Proposed Conditions for 2%, 3%, & 5% Slope

<table>
<thead>
<tr>
<th>Condition</th>
<th>Graph Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed 100 yr WSE 2% slope (n=0.06)</td>
<td>Proposed ground 2% slope</td>
</tr>
<tr>
<td>Proposed 100 yr WSE 3% slope (n=0.06)</td>
<td>Proposed ground 3% slope</td>
</tr>
<tr>
<td>Proposed 100 yr WSE 5% slope (n=0.06)</td>
<td>Proposed ground 5% slope</td>
</tr>
<tr>
<td>Existing 100 yr WSE</td>
<td>Existing ground</td>
</tr>
</tbody>
</table>

Flow

- **Main Street Bridge**
- **Upstream Extent**
- **Downstream Extent**
- **Grade Control Structure**

Pool

Graph Details

- Elevation (ft) vs. Station (ft)
- Various line types for different conditions and slopes.
Hydraulic Modeling Results

Main Street Bridge

Roughened Ramp (3% slope)
Channel Conveyance
Modeled Roughened Ramp Performance

<table>
<thead>
<tr>
<th>Cross Section Location in Roughened Channel</th>
<th>Discharge (cfs)</th>
<th>Depth (ft)</th>
<th>Velocity (fps)</th>
<th>Channel Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream</td>
<td>15</td>
<td>0.6</td>
<td>2.8</td>
<td>103</td>
</tr>
<tr>
<td>Upstream</td>
<td>200</td>
<td>2.0</td>
<td>3.1</td>
<td>103</td>
</tr>
<tr>
<td>Downstream</td>
<td>15</td>
<td>0.6</td>
<td>2.8</td>
<td>50</td>
</tr>
<tr>
<td>Downstream</td>
<td>200</td>
<td>2.0</td>
<td>4.2</td>
<td>50</td>
</tr>
</tbody>
</table>
Design Details
Additional Considerations

• Geotechnical investigation
 – Integrity of grade control structure
• Use of local materials
 – Downstream gravel mining operation
• Additional gradient control structures?
• Engineered streambed material
 – Fill void spaces to prevent infiltration to maintain low flow passage
• Letter of Map Revision
 – To be determined after final design
Next Steps

• Identify funding sources
• Complete final design
• Complete CEQA and permitting
• Implement project
Lessons Learned

• Clearly identify and communicate roles and responsibilities for each stakeholder

• Outreach and access takes longer than anticipated
Questions

Karola Kennedy
k.kennedy@elemindiancolony.org
(707) 994-3400
Sarah Ryan
sryan@big-valley.net
707-263-3924

Anthony Falzone
afalzone@flowwest.com
(415) 712 5955