Assessing Economic Benefits Associated with the Basin-Wide Feasibility Studies
Multi-Objective Flood Planning

Presented by:
Fatuma Yusuf, Ph.D.
Fatuma.Yusuf@ch2m.com
Senior Economist
CH2M

September 8, 2016
Floodplain Management Association
2016 Annual Conference
Building Community Resilience through Action
Sacramento, California
Today’s Discussion

• **Introduction and Background**
 - What are the Central Valley Flood Protection Plan (CVFPP) and Basin-Wide Feasibility Studies (BWFS)?
 - BWFS Multi-Objective Economic Benefits

• **Methodology**
 - Ecosystem benefits
 - Recreation & Open Space benefits
 - Avoided Loss of Service benefits – Power, Water/Wastewater & Transportation
CVFPP Overview
A Stressed System, the Need for Action

• Central Valley people, property and assets at risk

• Current flood risk management path unsustainable

• Lack of funding for capital works and for ongoing operations and maintenance of existing infrastructure

• In 2008, the Legislature enacted the Central Valley Flood Protection Act, which authorized and required development of the Central Valley Flood Protection Plan (CVFPP) to address these issues
2017 Update to the CVFPP

- 2017 Update has same goals 2012 CVFPP.
- The planning horizon is the 30 years.
- Refines and updates the State Systemwide Investment Approach (SSIA).
- Adds specificity about recommended near and longer-term investment and financing approach.
- Provides broad guidance about more resilient risk management.
- Coordinated and aligned with other major flood management efforts.
Technical Work to Support CVFPP Goals

• Technical analyses informing a reasonable, balanced and cost-effective approach

• Emphasis on sustainable, integrated flood management

• Diverse array of actions to improve flood protection

• CVFPP Public Draft December 2016

CVFPP GOALS

Primary Goal: Improve flood risk management

Reduce the chance of flooding
Reduce damages once flooding occurs
Improve public safety, preparedness, and emergency response

Supporting Goals

Improve Operations and Maintenance
Promote Ecosystem Functions
Promote Multi-benefit Projects
Improve Institutional Support
Introduction and Background

- BWFS Multi-Objective Economic Benefits
CVFPP Seeks to Provide a Range of Benefits

- Flood risk management
- Ecosystem restoration
- Water supply and water quality
- Recreation and open space
- Hydropower
- Navigation
- Commercial fisheries
- Social and regional economic effects
BWFS Benefit Evaluation
Methodology
• Benefits evaluated separately for
 – Ecosystem
 – Target species

• Ecosystem Benefits
 – evaluated using the Habitat Equivalency Analysis (HEA).

• Target Species Benefits
 – Qualitatively assessed
1. Screened concepts for recreation potential
2. Determined the appropriate Recreational Use Reference factor (Annual Visitor Days)
3. Determined the amount of new recreational acreage for each concept
4. Compared potential recreational benefits across BWFS configurations
SACRAMENTO/SAN JOAQUIN BASIN:

1. Screened current local government data for those detached, single-family residential parcels:
 - Located within 8 mile buffer of geographic center of an Urbanized Area, as defined by the U.S. Census Bureau as consisting of densely developed territory that contains 50,000 or more people, and
 - Located within 0.5 mile of one of the Concepts
2. Applied the median sale price of single-family homes in the City of Woodland, the applicable Urbanized Area, from Zillow ($309,000 as of June 2015)

3. Applied the resulting aesthetic premium of 4.5 percent (Taylor et al., 2012)
Avoided Loss of Service analyses focus on effects of flooding outside the inundated area.

Services potentially affected outside the inundation area are:
- Power
- Water/Wastewater
- Transportation
Assumptions:

- Location of flood-induced outages.
- Population losing power for 1 day - 3%
- Population losing power for 5 days - 0.5%
- Value of loss of power/person day = $135 (FEMA)
BWFS Evaluation Methodology: Avoided Loss of Power Service

- Database
- Inundation Depth
- Population Estimates

Avoided Loss of Power Service
Assumptions:

- Uses representative samples of damage areas to estimate benefits of increased levels of protection
- Service loss based on flood depth
- WTP values from FEMA (2011) used:
 - Water services: $93/person/day
 - Wastewater services: $41/person/day
BWFS Evaluation Methodology: Avoided Loss of Water/Wastewater Service

Methods:

• Used existing asset data from the Hazards United States Multi-Hazard (HAZUS-MH) database

• Representative flood inundation scenarios were generated using existing information and flood models developed in line with HAV methodology to support the BWFS.
Limitations:

- HAZUS and EPA databases – incomplete with respect to facility size and capacity and in some cases data is restricted due to security concerns
- Network reliability information not available
- Resilience of individual facilities – unknown, thus vulnerability and time needed to restore service also unknown.
• Need to change how we think about flood risk management

• 2017 Update will refine the 2012 CVFPP and provides a holistic path forward to a different approach

• The refined SSIA enables the State to integrate and prioritize investments in multi-benefit flood risk reduction projects

• CVFPP will take 30 years to implement
Contributors

Fatuma Yusuf, PhD
Senior Economist
2485 Natomas Park Dr.
Suite 600
Sacramento, CA 95833
916-286-0479
Fatuma.Yusuf@ch2m.com

Mary Jo Kealy, PhD
Senior Principal Economist
CH2MHILL
211 N. Pembrey Dr.
Wilmington, DE 19803
302-478-1521
Mary.Kealy@ch2m.com

Brian Walker, PE, CFM
Water Resources Engineer
DWR
3464 El Camino Ave.
Suite 200
Sacramento, CA 95821
916-574-1451
Brian.Walker@water.ca.gov

Stephen Hatchett, PhD
Senior Principal Economist
CH2MHILL
2485 Natomas Park Dr.
Suite 600
Sacramento, CA 95833
916-286-0421
Stephen.Hatchett@ch2m.com
For More Information

Central Valley Flood Management Planning (CVFMP) Program website
www.water.ca.gov/cvfpm

cvfmp@water.ca.gov
Assumptions:

• Flood expected to change traveler behavior
• Both private and commercial traffic is expected to be affected – though to different degrees
• Rail travel not included at this time
Methods:

• Loss of trips due to inaccessibility of traveler destinations

• California Statewide Travel Demand Model (CSTDM)

• CSTDM Translates information regarding traveler delays, diversions and interruptions into expected economic impacts
BWFS Evaluation Methodology: Avoided Loss of Transportation Service

- Linked California Statewide Travel Demand Model (CSTDM) network to road centerline geolocations.
- Overlaid flood inundation areas and depths on road network
- Assessed road operations and closures
- Used CSTDM to estimate traffic volumes, routes, travel times
- Estimated costs of travel delays, re-routing
Linked Analysis Provides New Way of Assessing Transportation Service Benefits

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Models</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone System</td>
<td>Short Distance Personal Travel Model (SDPTM)</td>
<td>Trip Lists</td>
</tr>
<tr>
<td>Road Network</td>
<td>Long Distance Personal Travel Model (LDPTM)</td>
<td>Trip Tables</td>
</tr>
<tr>
<td>Transit Network</td>
<td>Short Distance Commercial Vehicle Model</td>
<td>Loaded Network</td>
</tr>
<tr>
<td>Population</td>
<td>Model (SDCVM)</td>
<td>Travel Times and Costs</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td>Summary Travel Statistics</td>
</tr>
<tr>
<td>Other Zonal Properties</td>
<td>Long Dist. Commercial Vehicle Model Model (LDCVM)</td>
<td>Maps</td>
</tr>
<tr>
<td></td>
<td>External Travel Model (ETM)</td>
<td>Graphs</td>
</tr>
</tbody>
</table>
Data Sources Used

Inundation Grid

Road Network

CSTDM Network