Rapid Modeling of In-Season Catastrophic Flood Events

Prepared by Hojjat Seyyedi of Impact Forecasting
Agenda

Section 1 Fluvial Component
Section 2 Pluvial Component
Section 3 Real-time Flood Modeling
Section 4 Validation
Section 5 Vulnerability Modeling
Section 6 Summary
Section 1: Fluvial Component

- Real-time USGS stream gauge measurements
- River routing model
Real-time stream gauge measurements

- USGS has historically maintained approximately 22,500 stream gauges
 - Provide direct measurement of river flow and height
 - Capture all types of flood events
 - Errors related to instrumentation and methods are within 5-10%
Discharge Data Recorded

Data for the following 1 site(s) are contained in this file

USGS 06730200 BOULDER CREEK AT NORTH 75TH ST. NEAR BOULDER, CO

Data provided for site 06730200

<table>
<thead>
<tr>
<th>DD parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>gage height, feet</td>
</tr>
<tr>
<td>04</td>
<td>Discharge, cubic feet per second</td>
</tr>
</tbody>
</table>

Data-value qualification codes included in this output:

A Approved for publication -- Processing and review completed.

<table>
<thead>
<tr>
<th>agency_cd</th>
<th>site_no</th>
<th>datetime</th>
<th>tz_cd</th>
<th>04_00060</th>
<th>04_00060_cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 00:00</td>
<td>MDT</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 00:15</td>
<td>MDT</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 00:30</td>
<td>MDT</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 00:45</td>
<td>MDT</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 01:00</td>
<td>MDT</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 01:15</td>
<td>MDT</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 01:30</td>
<td>MDT</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 01:45</td>
<td>MDT</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 02:00</td>
<td>MDT</td>
<td>70</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 02:15</td>
<td>MDT</td>
<td>68</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 02:30</td>
<td>MDT</td>
<td>68</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 02:45</td>
<td>MDT</td>
<td>68</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 03:00</td>
<td>MDT</td>
<td>68</td>
<td>A</td>
</tr>
<tr>
<td>USGS</td>
<td>06730200</td>
<td>2013-09-06 03:15</td>
<td>MDT</td>
<td>68</td>
<td>A</td>
</tr>
</tbody>
</table>
Section 2: Pluvial Component

- Intensity Duration Frequency (IDF) curve development
- Pre-calculated scenarios
Intensity Duration Frequency (IDF) curve development

- Over 50,000 IDF curves are developed in order to cover the entirety of the U.S.
Rainfall Runoff Modelling

- A two-dimensional hydrodynamic model is used to simulate flood depth
- The model is a physically based distributed model and Solving 2D St. Venant equations:

\[
\frac{\partial h}{\partial t} + \frac{\partial hU}{\partial x} + \frac{\partial hV}{\partial y} = e
\]

\[
\frac{\partial hU}{\partial t} + \frac{\partial hUU}{\partial x} + \frac{\partial hVU}{\partial y} = \frac{\partial hT_{xx}}{\partial x} + \frac{\partial hT_{xy}}{\partial y} - gh \frac{\partial z}{\partial x} - \frac{\tau_{bx}}{\rho}
\]

\[
\frac{\partial hV}{\partial t} + \frac{\partial hUV}{\partial x} + \frac{\partial hVV}{\partial y} = \frac{\partial hT_{xy}}{\partial x} + \frac{\partial hT_{yy}}{\partial y} - gh \frac{\partial z}{\partial y} - \frac{\tau_{by}}{\rho}
\]
Pre-calculated flood scenarios

- Pluvial flood cases are pre-calculated for each selected modeled domain
Section 3: Real-time flood modeling

- Smaller event: Setting up a new model
- Large event: Using pre-calculated scenarios
- Validation
August 2-4, 2015: Tampa, FL Flash Flood Event

Small event
Overview

- August 2-4, 2015 Flood Reanalysis
 - Nearly two weeks of continuous rainfall beginning ~July 20 fell across West Central Florida, particularly in Pinellas, Pasco, and Hillsborough counties in the Tampa Bay metro region
 - Excessive soil saturation was already an issue prior to a high intensity rainfall event that occurred from overnight on August 2 into August 3
 - Flash floods were reported in several areas of the Tampa Bay metro region
 - Flood heights of 1-4 feet
 - Multiple rivers overflowed their banks, including the Anclote and Hillsborough rivers
 - Numerous neighborhoods evacuated due to flood inundation
 - The following flash flood regions were modeled for this event:
 - Pasco County, FL
 - Hillsborough County, FL (including Tampa)
 - Pinellas County, FL
NASA TRMM Rainfall Data (July 20 – August 5)
Flash Flood Extent

- The image below shows the overall coverage of the flood footprint, which was modeled using full 2D hydrodynamic Rainfall – runoff model.
October 2015: South Carolina Flood Event

Large event
Meteorological Recap

- A highly complex atmospheric pattern with multiple surface and mid-level weather features working congruently to bring several days of excessive rainfall

- A plume of tropical moisture, which was partially aided by Hurricane Joaquin, tracked over the Carolinas for nearly 72 consecutive hours
 - Previous event during the last week of September brought 10+ inches of rain to region which left soils saturated and river levels elevated

Some areas recorded in excess of a 1-in-1,000 year rainfall total

<table>
<thead>
<tr>
<th>Location</th>
<th>Storm Total Rainfall</th>
<th>Location</th>
<th>Storm Total Rainfall (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount Pleasant, SC</td>
<td>26.88 inches</td>
<td>Folly Beach, SC</td>
<td>21.45 inches</td>
</tr>
<tr>
<td>Kingstree, SC</td>
<td>24.75 inches</td>
<td>Gills Creek, SC</td>
<td>20.28 inches</td>
</tr>
<tr>
<td>Boone Hall Plantation, SC</td>
<td>24.23 inches</td>
<td>Sunset Beach, NC</td>
<td>18.79 inches</td>
</tr>
<tr>
<td>Shadowmoss, SC</td>
<td>24.10 inches</td>
<td>Myrtle Beach, SC</td>
<td>17.40 inches</td>
</tr>
<tr>
<td>Charleston, SC</td>
<td>23.61 inches</td>
<td>Wilmington Airport, NC</td>
<td>8.79 inches</td>
</tr>
</tbody>
</table>

Source: NOAA
Rainfall Map

7-day rainfall map ending October 5 (Source: NOAA)
Overall Flood Extent
Map Showing Areas of Maximum Loss Potential

Columbia

Myrtle Beach

Charleston
More recent flood events
May 2015: TX/OK flood events
Flood Extent

Austin, TX

Dallas, TX

Oklahoma City, Ok

Houston, TX
April 2016: Houston Flash Flood Event
Flood Extent Map(s)
July 2016: Maryland Flash Flood Event

July 31, 2016 1-Day Observed Precipitation
Created on: August 02, 2016 - 19:40 UTC
Valid on: July 31, 2016 12:00 UTC
Flood Extent
The modelled results depict the inundation

The simulation accurately depicted water flow through residential communities downstream of the failures

Source: South Carolina Flooding Imgur
Impact Forecasting validated its flood heights

The modelled discharge captured the true extent of the damages in multiple locations

High water mark

1.89m
The extents matched many of the areas inspected

For example the hardest hit building, Title Max Loan, was modelled within a few feet of the observed height
The confluence discharge is modelled accurately

Although the discharge was 185,000 cubic feet per second (cfs), the maximum recorded in history was 364,000 cfs in 1908

Source: South Carolina Flooding Imgur
Section 5: Vulnerability Modeling
Comparison of depth damage functions

Typical USACE Vulnerability Functions

Typical IF Building Vulnerability Function
Summary

- Utilizing real-time satellite based precipitation data for pluvial flood modeling
- Utilizing real-time stream gauge measurements for fluvial flood modeling
- Flood extents and inundation depth validated based on on-site visits, reports and loss estimation
- Impact Forecasting is releasing flood extents 1-2 days after the event
Contacts

Hojjat Seyyedi, PhD
Impact Forecasting LLC
+1.312.381.5484
Hojjat.seyyedi@aonbenfield.com

Narathip Sutchiewchan, PhD
Impact Forecasting LLC
+1.312.381.4736
Narathip.sutchiewchan@aonbenfield.com

Siamak Daneshvaran, PhD PE ARe ARM.
Impact Forecasting
1.312.381.5886
siamak.daneshvaran@aonbenfield.com
Disclaimer

Legal Disclaimer
© Aon UK Limited trading as Aon Benfield (for itself and on behalf of each subsidiary company of Aon Plc) ("Aon Benfield") reserves all rights to the content of this report or document ("Report"). This Report is for distribution to Aon Benfield and the organisation to which it was originally delivered by Aon Benfield only (the "Recipient"). Copies may be made by that organisation for its own internal purposes but this Report may not be distributed in whole or in part to any third party without both (i) the prior written consent of Aon Benfield and (ii) the third party having first signed a "recipient of report" letter in a form acceptable to Aon Benfield. This Report is provided as a courtesy to the recipient and for general information and marketing purposes only. The Report should not be construed as giving opinions, assessment of risks or advice of any kind (including but not limited to actuarial, re/insurance, tax, regulatory or legal advice). The content of this Report is made available without warranty of any kind and without any other assurance whatsoever as to its completeness or accuracy.

Aon Benfield does not accept any liability to any Recipient or third party as a result of any reliance placed by such party on this Report. Any decision to rely on the contents of this Report is entirely the responsibility of the Recipient. The Recipient acknowledges that this Report does not replace the need for the Recipient to undertake its own assessment or seek independent and/or specialist risk assessment and/or other relevant advice.

The contents of this Report are based on publically available information and/or third party sources (the "Data") in respect of which Aon Benfield has no control and such information has not been verified by Aon Benfield. This Data may have been subjected to mathematical and/or empirical analysis and modelling in producing the Report. The Recipient acknowledges that any form of mathematical and/or empirical analysis and modelling (including that used in the preparation of this Report) may produce results which differ from actual events or losses.

Limitations of Catastrophe Models
This report includes information that is output from catastrophe models of Impact Forecasting, LLC (IF). The information from the models is provided by Aon Benfield Services, Inc. (Aon Benfield) under the terms of its license agreements with IF. The results in this report from IF are the products of the exposures modelled, the financial assumptions made concerning deductibles and limits, and the risk models that project the pounds of damage that may be caused by defined catastrophe perils. Aon Benfield recommends that the results from these models in this report not be relied upon in isolation when making decisions that may affect the underwriting appetite, rate adequacy or solvency of the company. The IF models are based on scientific data, mathematical and empirical models, and the experience of engineering, geological and meteorological experts. Calibration of the models using actual loss experience is based on very sparse data, and material inaccuracies in these models are possible. The loss probabilities generated by the models are not predictive of future hurricanes, other windstorms, or earthquakes or other natural catastrophes, but provide estimates of the magnitude of losses that may occur in the event of such natural catastrophes. Aon Benfield makes no warranty about the accuracy of the IF models and has made no attempt to independently verify them. Aon Benfield will not be liable for any special, indirect or consequential damages, including, without limitation, losses or damages arising from or related to any use of or decisions based upon data developed using the models of IF.

Additional Limitations of Impact Forecasting, LLC
The results listed in this report are based on engineering / scientific analysis and data, information provided by the client, and mathematical and empirical models. The accuracy of the results depends on the uncertainty associated with each of these areas. In particular, as with any model, actual losses may differ from the results of simulations. It is only possible to provide plausible results based on complete and accurate information provided by the client and other reputable data sources. Furthermore, this information may only be used for the business application specified by Impact Forecasting, LLC and for no other purpose. It may not be used to support development of or calibration of a product or service offering that competes with Impact Forecasting, LLC. The information in this report may not be used as a part of or as a source for any insurance rate filing documentation.

THIS INFORMATION IS PROVIDED “AS IS” AND IMPACT FORECASTING, LLC HAS NOT MADE AND DOES NOT MAKE ANY WARRANTY OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, WITH RESPECT TO THIS REPORT; AND ALL WARRANTIES INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED BY IMPACT FORECASTING, LLC. IMPACT FORECASTING, LLC WILL NOT BE LIABLE TO ANYONE WITH RESPECT TO ANY DAMAGES, LOSS OR CLAIM WHATSOEVER, NO MATTER HOW OCCASIONED, IN CONNECTION WITH THE PREPARATION OR USE OF THIS REPORT.