NOAA Atlas 14: Why Should a Local Official Review?

FMA 2016
Michelle Iblings
Alameda County Flood Control District
Agenda

• Implications
• Brief summary of NOAA14 and PFE in Alameda County
• Comparisons
• Findings
Alameda County – The Facts

- 80 mi shoreline
- 0 – 3,843 ft
- 12-30 MAP
- Low-High Urbanization
- Coastal, inland, leeward mountain rain patterns
NOAA Atlas 14, Volume 6 – Brief History

- Atlas 2 Volume 11 – For Western US
- Atlas 14 Volume 1 – For Semiarid SW
- Atlas 14 Volume 6 – For California
 - Version 1.0 (2011)
 - Version 2.3 (2014)
 - “Region of Influence”
- ONLINE PFDS (Precipitation Frequency Data Server)
Why Should I Care?

3 Implications

1. Rainfall → Runoff
2. Design Considerations
3. Impacts to the Public
#1 – We really only care about RUNOFF

Calibration to **Streamflow Gages**
#2 – Design Implications

- Liability of prior design
- Reduce PFE – Flooding
- Increase PFE – Waste $
#3 – Public Implications

“Never Underestimate the Power of a Line on a Map”
Alameda County – How We Find PFE’s

My Office MAP=18.9”

100-year, 24-hour PFE = 4.72”
NOAA 14 – How To Find PFE’s

"My Office"
Lat: 37.656
Long: -122.1

100-year, 24-hour PFE = 4.99"
Alameda County vs. NOAA 14

- Let’s Compare...
 - 100-year frequency
 - 24-hour duration
 - At one location (“My office”)
- Alameda County = 4.74 inches
- NOAA 14 = 4.99 inches
- Difference = 0.25 inches (5.3%)
Other frequencies, durations, and locations...

<table>
<thead>
<tr>
<th>Return Period</th>
<th>Duration in Minutes</th>
<th>Duration in Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>in Years</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>-9.4</td>
<td>-3.9</td>
</tr>
<tr>
<td>5</td>
<td>-19.2</td>
<td>-13.1</td>
</tr>
<tr>
<td>100</td>
<td>-17.9</td>
<td>-12.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return Period</th>
<th>Duration in Minutes</th>
<th>Duration in Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>in Years</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>-16.3</td>
<td>-12.2</td>
</tr>
<tr>
<td>5</td>
<td>-4.4</td>
<td>2.2</td>
</tr>
<tr>
<td>100</td>
<td>-8.7</td>
<td>-3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return Period</th>
<th>Duration in Minutes</th>
<th>Duration in Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>in Years</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1.9</td>
<td>6.4</td>
</tr>
<tr>
<td>5</td>
<td>-8.7</td>
<td>-3.2</td>
</tr>
<tr>
<td>100</td>
<td>-4.4</td>
<td>2.2</td>
</tr>
</tbody>
</table>
100-year, 6-hour Min and Max PFE...

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACFCD</td>
<td>1.8</td>
<td>3.8</td>
</tr>
<tr>
<td>NOAA</td>
<td>1.8</td>
<td>3.8</td>
</tr>
</tbody>
</table>
100-year, 24-hour Min and Max PFE...

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACFCD</td>
<td>3.2</td>
<td>7.1</td>
</tr>
<tr>
<td>NOAA</td>
<td>3.3</td>
<td>7.8</td>
</tr>
</tbody>
</table>
Spatial Comparison

<table>
<thead>
<tr>
<th></th>
<th>1-hour</th>
<th>6-hour</th>
<th>24-hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 – 14% for 2-year</td>
<td>19 – 24% for 2-year</td>
<td>16 – 36% for 2-year</td>
</tr>
<tr>
<td></td>
<td>-4 – 5% for 5-year</td>
<td>8 – 10% for 5-year</td>
<td>3 – 23% for 5-year</td>
</tr>
<tr>
<td></td>
<td>-5 – 9% for 100-year</td>
<td>10 – 14% for 100-year</td>
<td>5 – 30% for 100-year</td>
</tr>
<tr>
<td></td>
<td>Average 2%</td>
<td>Average 14%</td>
<td>Average 16%</td>
</tr>
</tbody>
</table>

Overall Range from –19 to 36%
Some other considerations...

- Alameda County values within NOAA 90% Confidence Interval (not +/- 5%!)

- Alameda County uses MAP to determine PFE (no MAP in NOAA14 online)
Another Study?!

2016 Analysis vs. NOAA Atlas 14
“Regional Frequency Analysis based on L-moment Statistics”

Major Differences
1. Additional data (more gages and longer records)
2. CRA (not ROI)
3. Refined resolution (smaller study size)

Similarities
2. Data QC
3. GEV distribution
Alameda County – Rain Data QC

- **15 Hourly**
 (min 15 years)
- **39 Daily/Recording**
 (min 20 years)
2016 Analysis – More Data

<table>
<thead>
<tr>
<th></th>
<th>Number of Stations Used in NOAA Atlas 14</th>
<th>Number of Stations Used After QC and Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily</td>
<td>Hourly</td>
</tr>
<tr>
<td>24-hr Analysis</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>1-hr Analysis</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>15-m Analysis</td>
<td>~45</td>
<td></td>
</tr>
</tbody>
</table>

- **77% more Daily Stations**
- **165% more Hourly Stations**
2016 Analysis – Climate Region Approach

- **ROI** (Burn, 1990) – Each station has its own region with a potentially unique combination of nearby stations, based on maximum allowable distance from the target station.

- **CRA** – Regions are delineated based on climate, season(s) of highest precipitation, type of storm, topography, and the homogeneity of these characteristics in a given geography.
ROI (NOAA14 in CA) vs. CRA (2016 Analysis)
2016 Analysis – Spatial Resolution

(A)

(B)

Temperature (C)
Value
3.4 - 17.3
17.4 - 19.8
19.9 - 21.8
21.9 - 23.5
23.6 - 25.1
25.2 - 26.5
26.6 - 27.8
27.9 - 29
29.1 - 30.1
30.2 - 31.3
31.4 - 32.5
32.6 - 33.9
34.0 - 35.4
35.5 - 37.6
37.7 - 40.2
40.3 - 46.3
2016 Analysis – Findings

1. Differences are from TWO sources:
 Statistical Methodology & Spatial Distribution

2. Rainfall Frequency ≠ Runoff Frequency!
 “30 year window”
Conclusion

“Knowledge is Power!”
-Sir Francis Bacon

“Question everything!”
-Euripides

Consider the 3 Implications
1. Rainfall → Runoff
2. Design
3. Public
2016 Analysis – MAP to PFE

MAP $\rightarrow \sqrt{MAP} \rightarrow$ MAM \rightarrow Weight 1 \rightarrow Weight 2 \rightarrow
Spatially Interpolate Residuals (PRISM) \rightarrow PFE

Where
• MAP = At-site, recorded Mean Annual Precipitation
• MAM = Mean Annual Maxima (duration-based)
• Weight 1 = Data-year weighting to get an Improved MAM
• Weight 2 = Improved vs. Polynomial Estimation

Lots of Boring Math...