PREPARATIONS FOR FALL SEMINAR UNDER WAY

Bill Pitt, Chairman of the Planning Committee, has staged the Fall Seminar, to be held October 3rd and 4th, at the Hearthstone Motor Inn, Seekonk, Mass., located near the border of Massachusetts and Rhode Island. The Inn is five minutes from downtown Providence and is well known as one of Providence’s best dining places.

Educational topics for the Fall Seminar will deal with: (1) Windows, Their Problems—Design, etc., and (2) Heart Monitoring Equipment—Problems and Pitfalls. In addition, it is anticipated that the New England Hospital Engineers’ Society membership will participate in a “Let’s Communicate—Share Your Ideas” portion of the program.

Wives will be invited to the Seminar and a tour of some of the fine mansions and historical buildings of Newport, Rhode Island, is planned.

Seminar and room reservations are to follow with the next edition of the Newsletter.

GILBERT J. NESSOLINI

Those of you who know Gil, realize the effort he has shown the Society by attending to his responsibilities with astuteness and concern. This year, primarily through Gil’s efforts, as Chairman of the By-Laws Committee, the Society has a firm set of By-Laws to replace those which were previously proposed.

Born in Rome, Italy, Gil moved to Watertown, Mass., at the tender age of five and later attended grade and high school there. Shortly after graduating from Northeastern University with a Bachelor of Science degree in Electrical Engineering, he was employed by Raytheon in the Electronic Construction Department where he.

WELCOME ABOARD

CORNELIUS DIXON
Chief Engineer
Seaton Hospital
Waterville, Maine

STANLEY B. SHORT
Engineer
Central Maine Sanatorium
Fairfield, Maine

OSCAR LaPORTE
Maintenance Manager
Sturdy Memorial Hospital
211 Park Street
Attleboro, Massachusetts

WILLIAM E. PROWTEN
Resident Engineer
330 Mount Auburn Street
Cambridge, Massachusetts

NORMAN B. FISCHER
Executive Engineer
New Britain General Hospital
100 Grand Street
New Britain, Connecticut 06050

EDWARD F. HUGGARD
Chief Engineer
Framington Union Hospital
25 Evergreen Street
Framingham, Massachusetts

JOSEPH POSADAS
Assistant Engineer
New Britain General Hospital
100 Grand Street
New Britain, Connecticut 06050

(Continued on page 6)
A PREVENTATIVE MAINTENANCE SYSTEM

A workable, simple preventative maintenance system can be operated efficiently with only five factors.

1. A schedule
2. A machinery history system
3. Adequate manufacturers information
4. Proper supervision
5. Capable personnel

1) A visual card rack with 52 pockets which represents the weeks in the year can form the basis for the automatic scheduling. Manufacturers information, company policy, and the machine’s own peculiarities will dictate when the equipment requires preventative maintenance attention through the use of the cards in the rack. (See photograph.)

2) A small file drawer with machinery history cards can give a great deal of invaluable information such as an amortization schedule, life expectancy, technical information, a list of spare parts and their location, and the labor used in repair and maintenance.

3) Another file can contain all the manufacturer’s information. Original specifications, maintenance and other technical data, along with operating instructions should be kept as masters. Additional copies should be xeroxed or copied in some other form for the actual use by the mechanic. These copies can be taken to the job site and can be permitted to become dirty or even lost without getting into difficulties. Attachments, such as controls, motors, pumps, and other auxiliary equipment should be covered by technical data. It may be necessary to write to the individual manufacturers in some cases to obtain this information, however it is well worth having it available.

4) Each week, preferably on Monday, the cards which are color coded by trades should be removed by the personnel actually prosecuting the work. If at the end of the week the cards are not filled out or are not returned, they should be audited by a so-called interested disinterested person such as the stock clerk or clerical person. This person should in turn report to the supervisor or the mechanic carrying out the work, that the work has not been completed. He in turn may find the following:

a. Repairs are required and parts are on order. The card will not be returned until the unit has been put back into satisfactory working condition.

b. Too busy on other work and neglects the PM program. (This type of excuse should not be accepted, all personnel should recognize the importance of the program, and be assigned enough time whenever possible.)

c. He simply forgot. (This excuse is seldom admitted, and the supervisor must periodically push the men to see that this function is carried out.)

5) The personnel actually assigned to the work are required to go to the card rack and remove from the pockets the cards which are color coded for his particular trade. He then will arrange them in the proper logical sequence to form a route within the plant and to arrange them in a time schedule which will not conflict with the operation of the department operating the equipment or he will carry out preventative maintenance. The ability of personnel should be equal to the requirements and if the requirements exceed their ability, they should have recourse to their supervisor, for support. It may be necessary to call on outside assistance in rare cases. If spare parts are used and repairs made, IT IS MANDATORY THAT REPLACEMENTS ARE ORDERED AND THAT THE MACHINERY HISTORY CARD IS PROPERLY FILLED OUT.

There are many variations on this theme, and each system should be set up to meet the needs of the individual firm. It will take all of six months to educate the personnel and get the documentation in the proper form so that this simple, low cost and nearly foolproof method can work for your firm.

Many preventative maintenance systems, very similar to the one described, are used throughout hospitals in New England. This system was first observed at St. Vincent’s Hospital, Worcester, Mass. Credit for this article goes to Mr. William Hanney, their engineer.
TREAT YOUR BLUEPRINTS LIKE MONEY—FILE THEM CORRECTLY

By Verne R. Clow
Construction Engineer
Danbury Hospital

Most hospital engineers have their blueprints fitted into file drawers, rolled up and thrown in corners, distributed to various departments within the complex, or otherwise tossed helter skelter in some deep dark chasm of the office where it takes as long as an hour and a half to find a particular drawing.

Three things are vital to the proper method of filing blueprints so that they are accessible by trade, by building, at any time. They are as follows: (1) An adequate supply of plan files. (2) A file index (loose leaf binder). (3) Most importantly, a secretary who has control; for it is said, "The surest way to get a job done is to give it to a busy man. He'll have his secretary do it."

With the assumption that most hospital engineers have a poor blueprint filing system (and I have seen a few), this system (not the system) with the aid of a competent secretary, offers a simple yet unique method of finding and filing blueprints of any type.

Information critical to the establishment of a filing system is presented by reading the architectural block which includes: (1) The type of drawing it is—architectural, structural, plumbing, heating and ventilating, or electrical. (2) The drawing number. (3) The date. (4) By whom the drawing was in fact accomplished. (5) The title (Site Plan, 5th Floor, 3rd Floor, Partition Furring Details, etc.). Utilizing the architectural block, arrange all drawing duplicates together, and all drawings of each separate complex together, with their respective trades, tracings, preliminaries, etc.

NUMERICAL BUILDING IDENTIFICATION

Utilizing a site plan, the breakdown of the separate complexes comprising a hospital is readily obvious. Separate buildings should be designated by a number and that name the hospital has granted to a particular building. For example, Annex 4 may be given a number, such as 1; Home 50 may be numbered 2; and Interns' Quarters, No. 3, etc., throughout the site plan. (See drawing.)

<table>
<thead>
<tr>
<th>Bldg. No.</th>
<th>Building Identification</th>
<th>Date Constructed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Annex 4</td>
<td>1943</td>
</tr>
<tr>
<td>2</td>
<td>Home 50</td>
<td>1950</td>
</tr>
<tr>
<td>3</td>
<td>Interns' Quarters</td>
<td>1931</td>
</tr>
</tbody>
</table>

In the Engineering Office, a site plan with numbers attached to each building should be available for reference until the numbering system is adopted. It doesn't matter if others know the number of a particular named building or not; it's given a number for your filing system.

BLUEPRINT NUMBERING SYSTEM

(1st Page of Loose-Leaf Binder)

To begin, a blueprint numbering system should be established in an effort to afford easy reference to the filing index and print-file locations. Begin with a 100's digit corresponding to a building number—100 being Building No. 1, or Annex 4; 200 being Building No. 2, or Home 50, so indicated on the reference site plan.

The last two digits of the 100's figure (10th's) such as 10, 20, 30, 40 indicate the trade (10 Architectural, 20 Plumber, 30 Structural, etc.) The last digit to the right (units) is that individual print number under that section.

210-3 indicates that the building in question is Home 50, or Building No. 2 (designated on your site plan); that the print is architectural, and that it is the 3rd architectural blueprint of that building.

Other prefixes may precede the number, as P-210-3 (3rd page of architectural preliminary) or T-210-3 for tracing, etc.

A blueprint numbering system might be set up as follows:

<table>
<thead>
<tr>
<th>Blue & White Prints</th>
<th>Building Name & No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Annex 4 -No. 1</td>
</tr>
<tr>
<td>200</td>
<td>Home 50 -No. 2</td>
</tr>
<tr>
<td>300</td>
<td>Interns' Quarters-No. 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trades</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Architectural</td>
</tr>
<tr>
<td>20 Structural</td>
</tr>
<tr>
<td>30 Plumbing</td>
</tr>
<tr>
<td>40 Heating</td>
</tr>
<tr>
<td>50 Ventilating</td>
</tr>
<tr>
<td>60 Electrical</td>
</tr>
</tbody>
</table>

BLUEPRINT FILE INDEX

The blueprint file index pages themselves, give reference to drawer and print locations and should include the file number as previously set up, augmented by information given in the architectural block.
The file index as shown here, indicates to the reader that Home 50 is Building No. 2; that it is an architectural print; and that it is the 3rd page in file drawer 200; that there are four duplicates of this particular print; that it is the 3rd Floor Plan drawn by L.B.E. on February 28, 1961; and that it is architectural drawing No. A-101. Dates distinguish new construction from old—therefore incorporation is imperative to the growth of both building complex and blueprint file index.

Drawings by the Hospital Engineering Department can be incorporated into this system as they occur, Drawings may be placed in the file drawer upside down with the file numbers incorporated and easily read as one looks through the prints.

It is suggested that the secretary return those drawings taken from the files and if drawings are to be taken for a period of time, that the person responsible sign a paper to that effect. The signed-out blueprint should be kept in the proper file index page for easy reference (who has the print and for how long?)

Sufficient drawers will enable you to label each with file numbers (101-1 to 310-1 representing three complete building blueprints in one drawer)—and thus provide reference to a particular print obtained from the Blueprint File Index.

The editor feels this is a good system as long as there is control. The time taken to properly set up and follow the procedures given here will more than compensate for time lost searching for a lost print. Blueprints cost money—don't throw it away—have your secretary manage it.

PARKING LOT COMMANDMENTS

Parking still exists as one of the hospital engineer's necessary evils, for it is usually his ultimate responsibility to inform and eventually warn people that parking in front of the Emergency entrance, Purchasing, or fire exits is not an allowed practice.

Signs, as a form of control, are frequently augmented by paid parking, transporting of employees, stickers, tickets, or towing. However we look at it, the hospital engineer becomes involved in the most sophisticated type of control for the parking of employees, visitors, doctors, and services. Hospital personnel often come to know the engineer as a notorious "Lawman of the Parking Lot."

Mr. Charles Shields of the Memorial Hospital in Worcester, Mass., submitted the following "Parking Lot Commandments" which, with the proper violation circled, may act as a sincere reminder to those persons frequently violating the proper parking procedure.

1. Thou shalt not say to thyself: I have come early, so I will park where it pleases me.
2. He who cometh first shall park in the back row, that his neighbor will have easy access when he also cometh.
3. Thou shalt park close enough to thy neighbor's car that thou wasteth not space where others might park.
4. Thou shalt not honk thy horn at one who stoppeth to unload thy brethren.
5. Thou shalt not let thy car stand at the door except to load and unload thy brethren.
6. Thou shalt not dent thy neighbor's fender when thou openest thy doors, for insurance will not hold him guiltless who dentest his neighbor's fenders.
7. Thou shalt leave an aisle at the west end of the front row of cars, that thy neighbor may have room to drive out.
8. Thou shalt utter a cheerful "Good morning" to him who standeth near thee when thou parkest thy car.
9. Thou shalt help the stranger within thy parking lot to park his car, that the commandments may be known to him also.
10. Thou shalt cherish the lives of children which the Lord Thy God giveth thee and drive thy car cautiously for their sake.

Credit to:
Baptist Memorial Hospital
Texas

BY-LAWS

Enclosed with this issue of the Newsletter is a set of the Society's By-Laws as passed at the Annual Meeting, March 26, 1968. Each member should keep this set to refer to. They are the basis for our Society.

(4)
New England Hospital Engineers’ Society

KNOW YOUR NEW SLATE OF OFFICERS

Treasurer
GILBERT J. NENZOLINI
Plant Engineer
Massachusetts General Hospital
Boston, Massachusetts

President-Elect
WILLIAM T. DOHERTY
Plant Superintendent
Saint Francis Hospital
Hartford, Connecticut

President
EVERETT H. BENOIT
Administrative Engineer
Rhode Island Hospital
Providence, Rhode Island

Vice President
FREDERICK J. MACINNIS
Chief Engineer
Cooley Dickinson Hospital
Northampton, Massachusetts

Secretary
ALEXANDER BENDER
Supt. of Buildings & Grounds
The Gaylord Hospital
Wallingford, Connecticut

STATE REPRESENTATIVES

Vermont
CONRAD R. DESAUTEELS
Chief Engineer, DeGoesbriand Unit
Medical Center Hospital of Vermont
Burlington, Vermont

Maine
CECIL A. POLKY
Chief Engineer
Thayer Hospital
Waterville, Maine

New Hampshire
RAYMOND E. DIXON
Plant Engineer
Mary Hitchcock Memorial Hospital
Hanover, New Hampshire

Connecticut
CARL KALLEN
Chief Engineer
Waterbury Hospital
Waterbury, Connecticut

Rhode Island
HENRY S. FAWCETT, JR.
Chief Engineer
Memorial Hospital
Pawtucket, Rhode Island

PNS - Picture not submitted
PARTICIPATE IN THE FALL SEMINAR

Bill Pitt, Chairman of the Planning Committee, has allowed time during the evening session of the Fall Seminar this year for the membership to participate in short presentations of problems that individual hospital engineers have faced in the past.

Prizes will be awarded to those presentations that are judged as most interesting. Enclosed with this Newsletter is a yellow sheet entitled "Let's Communicate—Share Your Ideas". Cut out the bottom section of this sheet and fill in the required information and send it to Bill prior to September 1st. Remember, this Society is what you make it—share your ideas.

As hospital engineers, we often are required to present our ideas to trustees, members of the Building Committee, the public, and friends. Here, Bill has presented you with an opportunity to participate in the Society by informing others of innovations, results, and helpful hints that have occurred within your hospital. This is a new innovation for the New England Engineers' Society and it is anticipated that the membership participation will not only aid our fellow hospital engineers but create the type of rapport among the membership that is becoming a Society such as the New England Hospital Engineers' Society.

POSITION OPENINGS
There are a number of good position openings in the New England area. Those interested in obtaining a position in Hospital Engineering should contact:

Everett Benoit, President
New England Hospital Engineers Society
Administrative Engineer
Rhode Island Hospital
Providence, Rhode Island 02903

Welcome Aboard
(Continued from page 1)

ROBERT C. PIKE
Engineer
Huggins Hospital
South Main Street
Wolfeboro, New Hampshire 03894

DONALD JOSEPH BEAUDIN
Asst. Director of Bldgs. & Grounds
Medical Center Hospital of Vermont
Colchester Avenue
Burlington, Vermont

NEWSLETTER
Published By

NEW ENGLAND HOSPITAL ENGINEERS' SOCIETY

BUSINESS SERVICES, INC.
Commerce Park
Eagle Road
Danbury, Conn.

GILBERT J. NESSOLINI
(Continued from page 1)
first constructed an electronic tube testing device and eventually was transferred to machine design.

From 1940 to 1941, Gil was the Research and Production Engineer at the Waltham Watch Company where he constructed a cathode ray timer and specified part tests used in the manufacture of watches, clocks, speedometers, etc. Gil was commissioned an Army Officer in 1942, and was sent to Harvard University Graduate School to receive radar training in their School of Electronics Engineering and Radar Design, from which he set up training programs for Army personnel located in the Aleutian Islands. Later, he was ordered to the European theatre and became Installation Officer in charge of all installation teams installing Army airways communication equipment in the entire theatre.

From 1946 to 1948, Gil worked under the general supervision of the Chief, Aircraft and Electronics Division of War Assets Administration as technical consultant for disposition of electronic items.

From 1948, he has held three positions at Massachusetts General Hospital and is now their Director of Engineering and Maintenance.

Gil is a registered Professional Engineer in the State of Massachusetts and is presently president of the Boston Hospital Plant Engineers Club as well as treasurer for our own New England Hospital Engineers' Society.

Living in Waltham, Mass., Gil is married to the former Claire Goodwin and has a son, Richard and daughter, Elise. What spare time he has is filled with interests in photography, fishing, woodworking, and, of course, electronics.

The next time you happen to see Gil, strike up a conversation with him; you'll find him a very affable person and one you'll be glad to know.