Future Energy Scenarios Worldwide
(Example: Armenia)

Presented by ASA and NREL Staff

Introduction By Ken Touryan

March 3, 2012
Humanity’s Top Ten Problems for next 50 years

1. ENERGY
2. WATER
3. FOOD
4. ENVIRONMENT
5. POVERTY
6. TERRORISM & WAR
7. DISEASE
8. EDUCATION
9. DEMOCRACY
10. POPULATION

2003 6.3 Billion People
2050 8-10 Billion People
OPEC ascendant. BP projects non-OPEC oil output (pink wedge and below) to plateau as OPEC’s market share (dotted line) rises.
Solar Radiation Processes and Conversion Paths

Incident Sunlight → Production of Heat → Thermoconversion → Etc.

Primary Processes

Conversion Mechanisms/Technologies (including storage)

Useful End Products
Detailed Morphology for Solar Thermoconversion Paths

<table>
<thead>
<tr>
<th>Production of Heat</th>
<th>Thermocconversion</th>
<th>Primary Process</th>
<th>Primary Products</th>
<th>Conversion Mechanism/Technology</th>
<th>Useful End Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean currents</td>
<td>Turbines</td>
<td>Electricity</td>
<td>Shaft Horsepower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean Thermal</td>
<td>Closed and Open Cycle Heat Engines</td>
<td>Electricity</td>
<td>Shaft Horsepower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gradients</td>
<td></td>
<td>Thermomechanical Effect</td>
<td>Shaft HP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot Fluids, Solids (May require Solar Concentrators)</td>
<td>Various Heat Engines</td>
<td>Electricity</td>
<td>Shaft HP</td>
<td>Process & Space Heat</td>
<td></td>
</tr>
<tr>
<td>Atmospheric Winds</td>
<td>Wave Conversion Devices</td>
<td>Electricity</td>
<td>Shaft HP</td>
<td>Electricity, Shaft HP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind Turbines</td>
<td>Electricity</td>
<td>Shaft HP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaporation/</td>
<td>Salinity Gradients</td>
<td>Electricity</td>
<td>Shaft HP</td>
<td>Electricity, Shaft HP</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>Hydroelectric</td>
<td>Electricity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Energy Substitution Model

- Wood
- Coal
- Oil
- Natural Gas
- Nuclear
- Sol-Fus

Thick lines after Marchetti 1977
Thin lines from BP Statistical 2007
Converging Trends Will Shape Our Future for Renewable Energy

These trends are:

• Increasing environmental awareness
• Availability of new technology options
• World energy demand growth
• Energy security risk and uncertainties
• Increasing business interest
Desired Future Scenario Worldwide

- Promotion of Use of Energy from Renewable Sources
- All 27 EU countries have responded: 10-30 yr. plans
- Russia has created its own plan: 10% by 2020
- Armenia followed Switzerland: 20-30 yr. plan
- DEM organized a team. Results presented to the ROA government (see March 2012 Issue of PSCF)
Preparation of the Renewable Energy Development Roadmap of Armenia (REDRA)

2011
The goal: Vision, Targets, Strategy

Time horizons:

• Short term – to 2013
• Mid term – to 2015
• Long term – 2020 and beyond
Vision. Variables/factors (RA Goals, Technologies, Flexibility, Legislation)

RoA TARGETS

<table>
<thead>
<tr>
<th>Energy Demand, GWh</th>
<th>Electrical</th>
<th>Thermal</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010: 4 500</td>
<td>2010: 11 400</td>
<td>2010: 7 900</td>
<td></td>
</tr>
<tr>
<td>2015: 5 700</td>
<td>2015: 11 900</td>
<td>2015: 10 350</td>
<td></td>
</tr>
<tr>
<td>2020: 6 600</td>
<td>2020: 12 600</td>
<td>2020: 13 600</td>
<td></td>
</tr>
</tbody>
</table>

- Energy Independence: reducing dependency on imports
- Potential of lowering the energy costs
- Creation of high tech industries, infrastructure, service, education, jobs
- Environmental benefits

LEGISLATION

<table>
<thead>
<tr>
<th>Tariffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
</tr>
<tr>
<td>Tax holidays</td>
</tr>
<tr>
<td>Duty exemption</td>
</tr>
<tr>
<td>Favorable financing</td>
</tr>
<tr>
<td>Net Metering</td>
</tr>
<tr>
<td>Certification</td>
</tr>
<tr>
<td>Standards</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

TECHNOLOGIES

- Renewable Energy Technologies
 - SWH
 - Wind
 - PV
 - SHPP
 - Biofuel
 - Biomass
 - Solar Architecture
- Heat Pumps
- Electric Cars
- System Integration, Load Leveling
 - Pumped Hydro Storage
 - Hydrogen: electrolysis, fuelcells
 - DSM
- Energy Efficiency
 - Insulation, management, etc.
 - Distribution system control
Wind Power Plants: Technical potential

- Measured Wind Power Potential at Top-Ranked Sites

<table>
<thead>
<tr>
<th>Confirmed by monitoring</th>
<th>Not confirmed by per Feb. 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poushkin Pass:</td>
<td>Karakhach Pass (West):</td>
</tr>
<tr>
<td>19.5 MW, 48.9 GWh</td>
<td>125 MW, 300-320 GWh</td>
</tr>
<tr>
<td>Karakhach Pass (East):</td>
<td>Sisian (Bichanag) Pass:</td>
</tr>
<tr>
<td>125 MW, 320 GWh</td>
<td>155 MW, 420-430 GWh</td>
</tr>
<tr>
<td>Zod Pass:</td>
<td>Charentsavan reg.:</td>
</tr>
<tr>
<td>50 MW, 120 GWh</td>
<td>20 MW, 45 GWh</td>
</tr>
<tr>
<td>Subtotal:</td>
<td>Subtotal:</td>
</tr>
<tr>
<td>195 MW, 490 GWh</td>
<td>300 MW, 765 GWh</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
</tr>
<tr>
<td>495 MW, 1250 GWh</td>
<td></td>
</tr>
</tbody>
</table>
Base Case RE Output

Annual Production, GWh

RE production up to 2020

Hydro
Wind
Geothermal
Biofuel
Heat Pumps
Solar Thermal
PV