QUALITY WATER TO THE PEOPLE AT ALL TIMES
THE ONE REHABILITATION PRIORITY THAT TRUMPS ALL OTHERS
Presentation Topics

• Project Background

• Project Team

• Unique Challenges and Opportunities

• Risk Assessment and Mitigation

• Factors That Cannot be Controlled—Quality and Quantity

• Quantity

• Quality

• Current Project Status/Lessons Learned
PROJECT BACKGROUND
Columbus, OH Service Area

- 2015 Annual Volume:
 - 7.2 Billion Gal
 - 15.9 Billion Gal
 - 25.6 Billion Gal

- 48.7 billion gallons in 2015
- 83% surface water
- Service population 1.16 million
Treatment Plant Site
Existing Treatment Process

- Scioto River
- Conventional Lime Softening Plant
- 65 MGD Capacity
Plant Treatment Goals

• Total Hardness: 120 mg/L to 125 mg/L as CaCO3
• Alkalinity: >35 mg/L as CaCO3
• Total Organic Carbon (TOC): <2.0 mg/L
• Nitrate: < 10 mg/L as N
• Atrazine: <2.5 ppb (MCL= 3.0 ppb)
• Stage 2 DBP Compliance:
 • Target 80% of Location Running Annual Average (LRAA) and Operational Evaluation Level
• Comply with all primary drinking water regulations
• Taste and Odor
New Treatment Processes & Upgrades to 80 MGD

• Biologically Active Carbon Filters
• New Recarbonation System
• Ozone
• Ion Exchange
• Residuals Handling, Electrical, Pump Station, and Miscellaneous Plant Upgrades
PROJECT TEAM
Project Team

Plant Operations & Maintenance

Tools to the Operations Staff

Pre-Construction Use
UNIQUE CHALLENGES & OPPORTUNITIES
UNIQUE CHALLENGES & OPPORTUNITIES

• Three Plants in System
 • All Three Scheduled for Renovation
 Same Period

• Dual Power Feed to Plant
 • Both Thru Same Substation
 • Significant New Users Added to One Circuit
 • City Owns Power System

• Plant Maintains System Pressures
 • Short Response Time
RISK ASSESSMENT AND MITIGATION
Risk Assessment & Mitigation

• Ongoing Process in All Phases of Work

• Condition Assessment
 • Criticality of Each Piece of Equipment
 • Consequences of Failure

• Phasing
 • Regulatory and Schedule Impacts

• Pilot Testing
 • Capability of Processes/Potential Modifications

• Design Details–Construction Restrictions & Sequencing
Risk Assessment & Mitigation

Construction Contract Phasing

TEMPORARY PUBLIC/EMPLOYEE ENTRANCE
FACTORS THAT CANNOT BE CONTROLLED
FACTORS THAT CANNOT BE CONTROLLED

• KEY FACTORS
 • System Demand
 • Weather
 • Raw Water Quality

• MITIGATION FACTORS
 • Share Demand Between Plants
 • Upstream Monitoring
 • Provide Tools for Treatment
 • Plant Personnel Prepared
MAINTAINING QUANTITY & QUALITY
Phasing Criteria—Quality & Quantity

• Regulatory Compliance
• Personnel & Public Safety
• Risk Assessment
• Contractor Work Areas/Interference/Use of Site
• Coordination with Construction at Other WTP
• Schedule and Approvals
QUANTITY
QUANTITY

• Three Plants
QUANTITY

• Replacement of:
 • Residuals Pump Station
 • High Service Pumps
 • Raw Water Pumps
 • Electrical System
QUALITY
QUALITY

• Approved Capacity for Each Process (OEPA)
• Upstream Monitoring
• Pilot Testing
 • Existing
 • New
• Historical Plant Data
CONSTRUCTION HOUSEKEEPING

• Filters
 • Enclosure Requirements
 • Performance
 • Enforcement

• Exterior Improvements
 • Open Basins
 • Inflow

• Equipment in Basins

• High Service Pumps

• Control Room & Lab
FILTERS

• Pilot tested existing and proposed media
 • Rate (2.0 gpm/ft2 to 3.4 gpm/ft2)
 • Performance
• Filters Out of Service
• Housekeeping
• Testing and Backwash
FILTERS
CHEMICAL FEED SYSTEMS

• Virtually every system rehabilitated or replaced
 • Condition Assessment
 • Risk Assessment
• Min. Tanks in Service
• Coordinate w/ Suppliers
• Removal w/o damaging Adjacent Tanks
RECARBONATION SYSTEM

- Installed a new Secondary System
- Operations prior to Shutdown of Existing
- Rental Tank during Switchover
POLYMER

• Coagulant Aid & Filter Aid Polymers
 • Bench scale screening
 • Plant scale testing
 • Regulatory Approval
• Pre-Construction
• System Left in Place
PROJECT STATUS & LESSONS LEARNED
LESSONS LEARNED

• Expect the Unexpected
 • PAC Quality
 • Nitrate Event

• Need to Sweat the Small Stuff
 • Chemical Deliveries (24/7)
 • Good Housekeeping

• Emphasize Criticality Early
• Communication
• Sequencing & Restrictions
• Continuous Improvement
• Know Your Plant
PROJECT STATUS

<table>
<thead>
<tr>
<th>Year</th>
<th>Av. TOC (ug/L)</th>
<th>% Removal</th>
<th>MIB Geosmin</th>
<th>TAP (ug/L)</th>
<th>DRWP THM (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>2.82</td>
<td>66</td>
<td>3.66</td>
<td><1.0</td>
<td>15-Jun 54.9</td>
</tr>
<tr>
<td>2015</td>
<td>2.11</td>
<td>65.4</td>
<td>7.14</td>
<td><1.0</td>
<td>16-Jun 33.2</td>
</tr>
<tr>
<td>2016</td>
<td>1.57</td>
<td>69.9</td>
<td></td>
<td><1.0</td>
<td>15-Jun 39</td>
</tr>
</tbody>
</table>
PROJECT STATUS

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av. TOC</td>
<td>2.82</td>
<td>2.11</td>
<td>1.57</td>
</tr>
<tr>
<td>% Removal</td>
<td>66</td>
<td>65.4</td>
<td>69.9</td>
</tr>
</tbody>
</table>

DRWP THM (µg/L)

<table>
<thead>
<tr>
<th></th>
<th>15-Jun</th>
<th>16-Jun</th>
<th>% reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>54.9</td>
<td>33.2</td>
<td>39</td>
</tr>
</tbody>
</table>

DRWP HAA (µg/L)

<table>
<thead>
<tr>
<th></th>
<th>15-Jun</th>
<th>16-Jun</th>
<th>% reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>33.7</td>
<td>24.9</td>
<td>26</td>
</tr>
</tbody>
</table>
Thank you!
Questions?
Existing Treatment Plant Site

• Original Plant -- 1907
• Existing Plant Constructed -- mid 1970’s
• No option to obtain additional property
 • Railroad
 • Post Office
 • Major Road plus Scioto River
 • County Engineers Office and Abandoned Landfill
• Department of Public Utilities Office Complex—1980’s
Existing Treatment Plant Site

• Multi Purpose Site
 • Treatment Plant
 • DPU Administrative Offices
 • Fleet Maintenance Facilities
 • Support Facilities and Personnel

• Access Required at All Times

• Public Access and Parking

• Space for Future Treatment Requirements