The Association between a Four-Oil Lipid Emulsion and Parenteral Nutrition Associated Liver Disease–Related Laboratory Values in Adults Receiving Home Parenteral Nutrition

Heather Stanner MS, RD, LDN, CNSC
Oley Research Prize Recipient
June 22, 2019
Statement of Disclosures

The presenter and other authors have no financial relationships or commercial conflicts of interest to disclose. No commercial funding was received for the completion of this study.
Agenda

- **Background**
- **Objective**
- **Methods**
- **Results**
- **Conclusions**
- **Strengths, Limitations, Take Aways**
Background

Home parenteral nutrition (HPN) is recommended for patients unable to meet their nutrition needs through an oral or enteral route

- Includes lipid injectable emulsions (ILE) as a macronutrient component, traditionally composed of soybean oil (SO); good source of essential fatty acids
- Pro-inflammatory nature of SO ILE is a potential factor in parenteral nutrition associated liver disease (PNALD) development
- Four-oil ILE is now FDA-approved for use as calorie source in adults
 - 30% SO, 30% medium-chain triglycerides (coconut oil), 25% olive oil, 15% fish oil
 - Fatty acids in fish oil contain anti-inflammatory properties
 - Potential benefit in treatment of PNALD with use of four-oil ILE; little data exists in HPN population
Objective

This study evaluated the association between a four-oil lipid emulsion and PNALD-related lab values in adult HPN patients with baseline abnormal liver function tests (LFTs).
Methods

Study sites:
• 12 branches of a large home infusion company in 9 states

Inclusion criteria:
• Adult HPN patients with baseline abnormal:
 • Alkaline phosphatase (ALP)
 • Alanine aminotransferase (ALT)
 • Aspartate aminotransferase (AST) or
 • Total bilirubin (T bili)
 x1.5 times the upper limit of normal
• Receiving four-oil ILE (Smoflipid®)

77 patients included in the study
Methods

Data collected retrospectively at 6 different time points over 12 months (Baseline [four-oil ILE initiation], 1, 2, 3, 6 and 12 Months)

Primary Outcome Measures:

• Changes in ALP, ALT, AST and T bili between time points

 High levels are indicative of liver disease

Secondary Outcome Measures:

• Changes in TG

 High levels are indicative of lipid intolerance

• Reports of essential fatty acid deficiency (EFAD)

 Physical symptoms: dry, scaly skin rash

 Elevated triene:tetraene ratio
Results: Participant Characteristics

TABLE 1. BASELINE CLINICAL AND DEMOGRAPHIC CHARACTERISTICS OF SAMPLE (N=77)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>54.2 ± 13.3</td>
<td>21–77</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>58.0 ± 15.0</td>
<td>34.0–127.8</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>20.6 ± 5.0</td>
<td>12.1–48.3</td>
</tr>
<tr>
<td>Four-oil ILE intake (g/kg)</td>
<td>0.7 ± 0.3</td>
<td>0.04–1.74</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>45</td>
<td>58.4</td>
</tr>
<tr>
<td>Male</td>
<td>32</td>
<td>41.6</td>
</tr>
</tbody>
</table>

Mean 17.3 ± 29.9 months receiving HPN prior to Four-Oil ILE initiation

Key: SD, standard deviation; yr, year; kg, kilograms; BMI, body mass index; kg/m², kilograms per meters, squared; ILE, lipid injectable emulsion
Results: Participant Characteristics

FIGURE 1. PRIMARY HPN INDICATION OF SAMPLE (N=77)
Results: ALT

FIGURE 2. COMPARISON OF ALT LEVELS BETWEEN TIME POINTS WHILE RECEIVING FOUR-OIL LIPID EMULSION

ALT values reported in units per liter
Median values reported with interquartile range (IQR)

* p≤0.05: Baseline to 1 Month, 2 Month, 3 Month, 6 Month & 12 Month; 1 Month to 6 Month & 12 Month; 2 Month and 3 Month to 6 Month
Kruskal-Wallis tests and post hoc Mann-Whitney U tests were used to detect changes between time points
Results: AST

FIGURE 3. COMPARISON OF AST LEVELS BETWEEN TIME POINTS WHILE RECEIVING FOUR-OIL LIPID EMULSION

- AST values reported in units per liter
- Median values reported with interquartile range (IQR)
- *p<0.05: Baseline to 1 Month, 2 Month, 3 Month, 6 Month & 12 Month
- Kruskal-Wallis tests and post hoc Mann-Whitney U tests were used to detect changes between time points
Results: ALP

FIGURE 4. COMPARISON OF ALP LEVELS BETWEEN TIME POINTS WHILE RECEIVING FOUR-OIL LIPID EMULSION

ALP values reported in international units per liter
Median values reported with interquartile range (IQR)

* p≤0.05: Baseline to 2 Month, 3 Month, 6 Month & 12 Month; 1 Month to 12 Month
Kruskal-Wallis tests and post hoc Mann-Whitney U tests were used to detect changes between time points
Results: T Bili

FIGURE 5. COMPARISON OF T BILI LEVELS BETWEEN TIME POINTS WHILE RECEIVING FOUR-OIL LIPID EMULSION

T bili values reported in milligrams per deciliter
Median values reported with interquartile range (IQR)
Results were not statistically significant
Kruskal-Wallis tests and post hoc Mann-Whitney U tests were used to detect changes between time points
Results: TG

FIGURE 6. COMPARISON OF TG LEVELS BETWEEN TIME POINTS WHILE RECEIVING FOUR-OIL LIPID EMULSION

TG values reported in milligrams per deciliter
Median values reported with interquartile range (IQR)
Results were not statistically significant
Kruskal-Wallis tests and post hoc Mann-Whitney U tests were used to detect changes between time points
Results: Essential Fatty Acid Deficiency

EFAD manifestation

- There were two reports of physical manifestations of EFAD (dry, flaky skin) at the Baseline (n=1) and Month 1 (n=1) time point in the same patient
- No triene: tetraene ratio results were reported for any subject at any time point
Conclusions

<table>
<thead>
<tr>
<th>ALT</th>
<th>AST</th>
<th>ALP</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Statistically significant decrease from Baseline to Month 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Initial return from abnormal values at Baseline to normal at Month 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Month 12 values near normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Statistically significant decrease from Baseline to Month 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sustained return from abnormal values at Baseline to normal at Month 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Statistically significant decrease from Baseline to Month 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Trend toward normal values from Baseline to Month 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limitations & Strengths

<table>
<thead>
<tr>
<th>LIMITATIONS</th>
<th>STRENGTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrospective design only allows for association, not causation</td>
<td>Data was collected over 12-month period - longer than most comparable studies</td>
</tr>
<tr>
<td>Volume & frequency of soy-based ILE was not always known prior to change to four-oil ILE</td>
<td>Four-oil ILE dosing was comparable - slightly higher than most related studies</td>
</tr>
<tr>
<td>Unable to make definitive conclusions about EFAD</td>
<td>Intake of four-oil ILE was relatively stable over 12 months, slightly increased over time</td>
</tr>
<tr>
<td></td>
<td>Relatively large sample size compared to related studies</td>
</tr>
</tbody>
</table>
Take Away Points

• Further studies are necessary to confirm benefit of four-oil ILE over SO ILE in adult HPN patients with PNALD-related lab values

• Continue using strategies to reduce risk of PNALD development
 • Avoid overfeeding of nutrients, ensure appropriate dextrose & ILE provision, cycle infusion over fewer hours

• Consideration of four-oil ILE use in adult HPN patients with abnormal LFTs after appropriate formula adjustments have been implemented and elevated LFTs persist
References

Thank You

- Karen Hamilton MS, RD, LDN, CNSC
- Kristy Feeney MS, RD, LDN, CNSC
- Nicolette Burzawa RD, LDN, CNSC
- Kasia Ciaston MS, RD, LDN, CNSC
- Andrew McArthur MS, RD, CSSD, LDN, CNSC, FAND
- Laura Trento MS, RD, CNSC
- Amy Tung MS, RD, CNSC
- Andrea Marigold RD, CNSC
- Jessi McCarroll MBA, RD, CNSC
- Katie Kelly MS, RD, CNSC
- RaLyn Lasley MS, RD, CNSC
- Charmagne Kim Emelue MS, RD, LD, CNSC