Oral Rehydration Therapy

Oley Meeting St Petersburg Florida July 1, 2009

Rehydration Therapy

Ezra Steiger MD Cleveland Clinic

Oley Picnic July 2009

We are all water creatures.

It makes up:

50 % of your body (Female)

60% of your Body (Male)

Sor

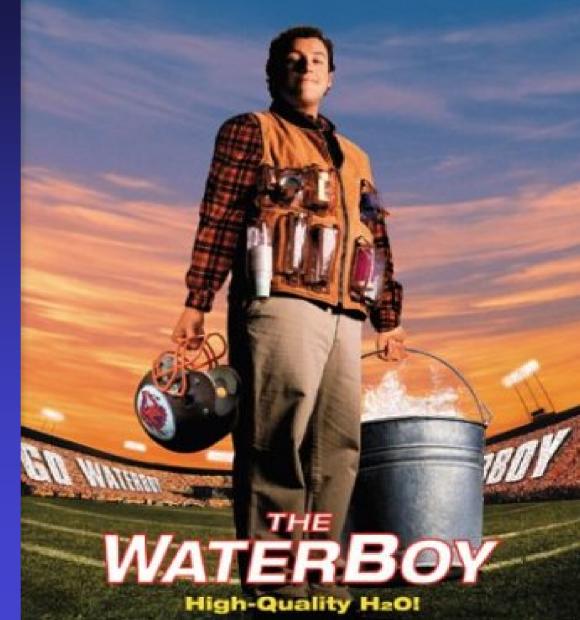
Tankowiwe

70% of your brain

Coach: Gatorade not only quenches your thirst better, it tastes better too

Bobby: No, you people are drinkin the wrong water

Coach : Gatorade


Bobby: H2O

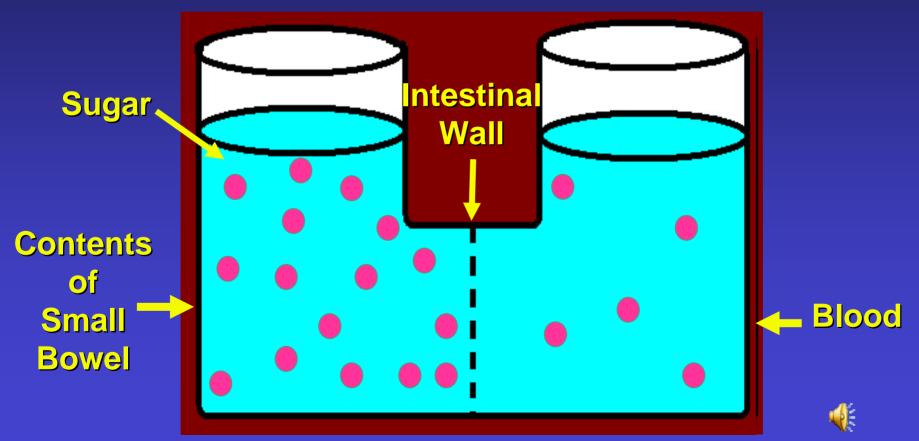
Coach : Gatorade

Bobby: H2O

Coach: (singing) Water sucks, it really, really sucks! Water sucks, it really, really sucks!

ADAM SANDLER

WATER ?


SPORTS DRINK ?

ORAL REHYDRATION SOLUTION ?

Intestinal Fluid Dynamics

Sodium
Water
Sugar
Osmolality

Intestinal Fluid Dynamics

Courtesy of Darlene G Kelly MD, PhD

Intestinal Fluid Dynamics = Diarrhea Dehydration ntestina Sugar Wall **Contents** <mark>)</mark> Blood Small Bowel 4

Courtesy of Darlene G Kelly MD, PhD

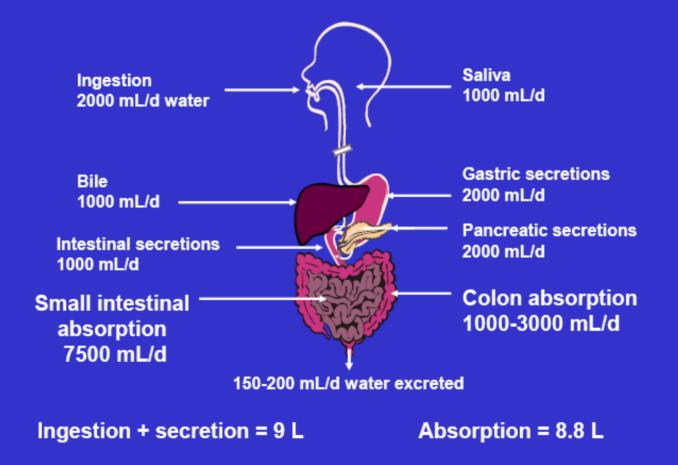
Acute Fluid Volume Deficit

- BP low
- Heart Rate increased
- Urine output low
- Recussitate with isotonic solutions such as Ringers

Consequences of Dehydration

- Each 1% of dehydration increases body temperature by 0.1-0.2 degrees C
- Heat loss by evaporation of sweat is decreased when a person is dehydrated
- Each 1% of dehydration increases the heart rate by 4 beats per minute
- When dehydration exceeds 2% work performance is decreased

Kenefick and Sawka J Am Coll Nutr 26:597s-603s, 2007.

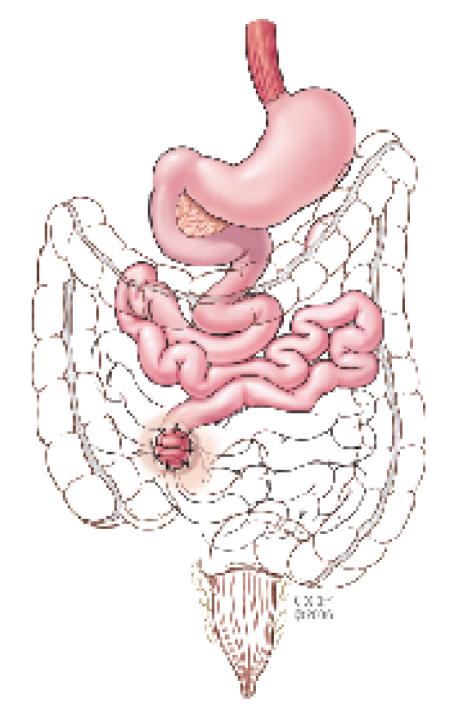

Chronic Fluid Volume Deficit

- Decreased skin turgor
- Weight loss
- Sunken eyes
- Hypothermia
- Oliguria
- Hypotension
- Tachycardia

• BUN/Cr >15

- Hematocrit elevated (6-8 points for each liter deficit)
- Urine sp gr high
- Urinary Na <20mEq/L

Fluid Secretion and Absorption


Total fluid entering bowel 8.5 L/day

Total fluid reabsorbed 8.4 L/day

100 ml

Short Bowel Jejunostomy

Composition of Body Fluids

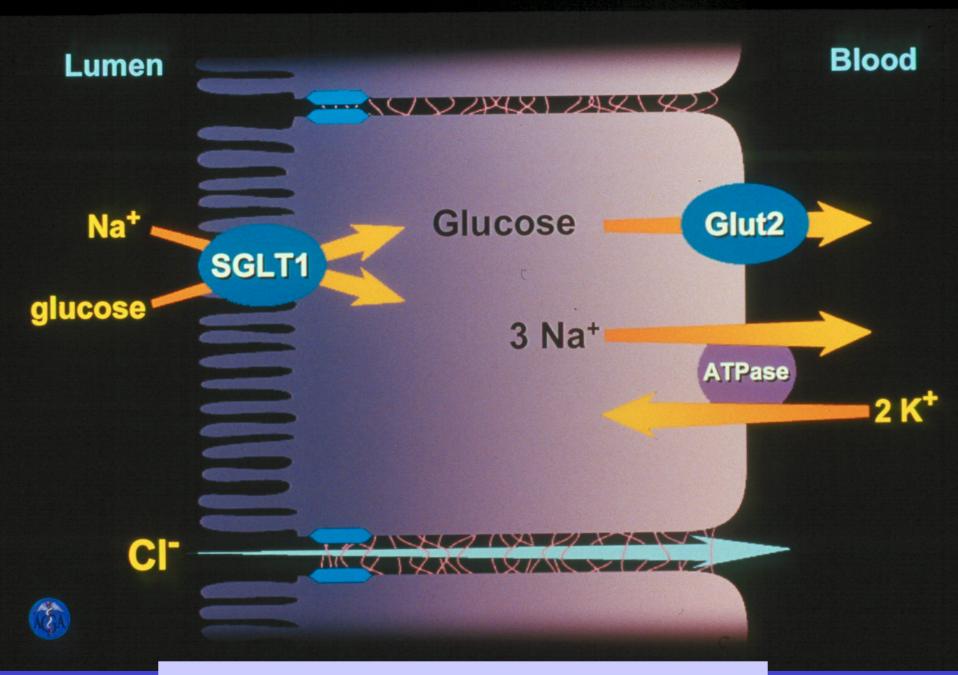
	Na+	K+	CI-	HCO ₃ -
Plasma	135-150	3.5-5	98-106	22-30
Gastric	10-150	4-12	<u>120-160</u>	0
Bile	<u>120-170</u>	3-12	80-120	30-40
Sml Int	80-150	2-8	70-130	20-40
Diarrhea	25-130	<u>10-60</u>	20-90	20-50

Challenges in the Management of Diarrhea

Replace Fluid Loss

Replace Sodium (Na) Loss

Oral Rehydration Therapy History

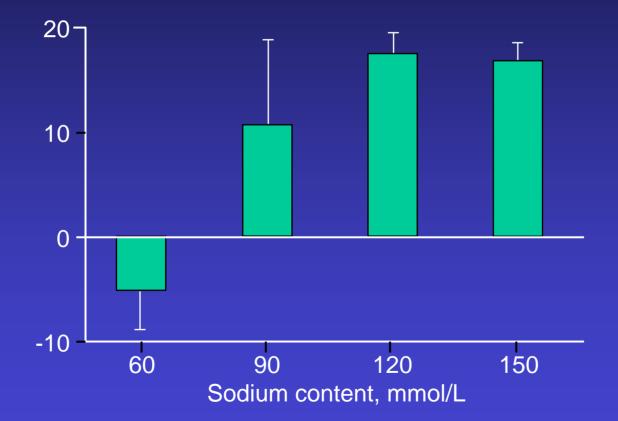

Sushruta Indian physician – 1,000 BC
Tepid water with rock salt and molasses

Elliott Clinical Medicine 8:296-297, 2008

Oral Rehydration Therapy History

- Darrow The retention of electrolyte during recovery from severe dehydration due to diarrhea 1946
- Chatterjee Control of vomiting in cholera and oral replacement of fluid 1953
- Hirschhorn Decrease in net stool output in cholera during intestinal perfusion with glucose containing solutions 1969

Elliott Clinical Medicine 8:296-297, 2008


Sodium/Glucose Co-Transport

Oral Rehydration Therapy History

- Mahalanabis Oral fluid therapy of cholera among Bangladesh refugees 1973 Mortality reduced from 30% to <4%
- Journal Lancet "The discovery that sodium transport and glucose transport are coupled in the small intestine, so that glucose accelerates the absorption of solute and water was potentially the most important medical advance this century." 1978

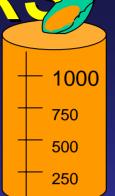
Oral Rehydration Solutions

Sodium balance in Short Bowel Syndrome

Rodriguez CA, et al. Clin Sci. 1988;74(suppl18):69.

Oral Salt Supplements for Patients with a High Output Jejunostomy

- Extra sodium was absorbed with each form of supplement
- 2 patients receiving salt capsules vomited
- A sipped glucose salt solution seems to be the optimal mode of sodium replacement


Nightingale JM, et al. Gut. 1992;33:759-61.

Oral Rehydration(?) Solutions

	Na	Carbohydrate *	Osmolality
	mMol/L	gm/L	mOsm/kg
WHO-ORS	90	20	310
Rice-based	90	40	260
Pediatric solution	50	20	270
Sports drink	20	20	145
Ginger ale	3	90	540
Apple juice	3	124	730
Chicken broth	250	0	450

Home Recipe for ORS

- 1 liter water
- 3/4 teaspoon table salt
- 4 tablespoons sugar (sucrose)

- 1 teaspoon baking powder (or ½ teaspoon baking soda)
- 1/2 teaspoon 20% potassium chloride (by prescription)
- Sugar-free artificial flavoring/sweetener to taste

WHO/UNICEF Oral Rehydration Solutions vs Home Recipe (mmol/L)

	Standard ORS	Home Recipe
Sodium	90	98
Chloride	80	77
Glucose	111 (20.0 gm)	146 (50.2 gm) *
Potassium	20	As needed
Citrate	10	
Osmolarity	311	321

WHO/UNICEF Oral Rehydration Solutions (mmol/L)

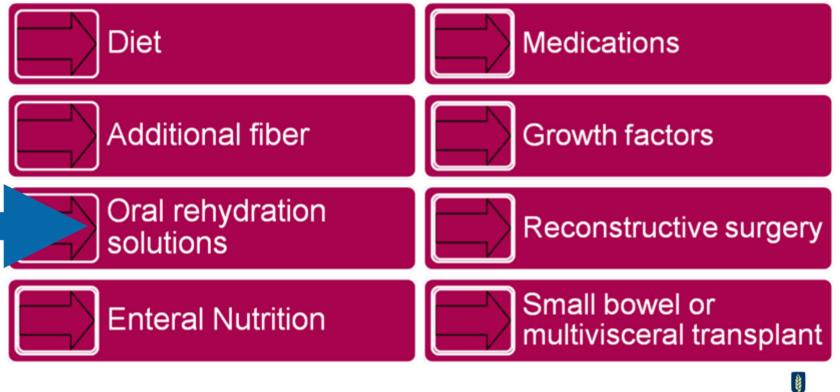
	Standard ORS	Reduced osmolarity ORS
Sodium	90	75
Chloride	80	65
Glucose	111 (20.0 gm)	75 (13.5 gm)
Potassium	20	20
Citrate	10	10
Osmolarity	311	245

Reduced Osmolarity ORS vs Standard ORS in Hospitalized Children

- Decreased stool output
- Less vomiting
- Less need for IV fluid
- No increase in hyponatremia

Pediatrics 107:613-618, 2001.

Cochrane Library Review Issue 2, 2009


G2 + Salt vs WHO Reduced Osmolarity Oral Rehydration Solution (mmol/L)

	Gatorade G2 + ¹ / ₂ tsp salt	Reduced osmolarity ORS
Sodium	63	75
Chloride	32	65
Glucose	156 (28 gm)	75 (13.5 gm)
Potassium	3	20
Citrate		10
Osmolarity	254	245

Intestinal Rehab & Transplant Program (IRTP)

To enhance absorptive capacity, improve nutritional status, and reduce need for PN through the use of:

Cleveland Clinic

H_2O

Sport Drink

ADAM SANDLER

EBB

High-Quality H20!

