Development of a new diagnostic tool for rapid detection of bloodstream infections in patients on home parenteral nutrition using ‘droplet digital PCR’ (ddPCR)

Drs. Yannick Wouters, PhD-student
Dr. Geert Wanten, head intestinal failure unit
Radboudumc, Nijmegen, The Netherlands

June 22, 2019
No disclosures
Diagnosis of bloodstream infections

- **Bloodstream infections:**
 - 1 episode every 1–5 years

- **Diagnosis with blood cultures (‘gold standard’):**
 - Slow (1-2 days bacteria, 1-5 days fungi)
 - False-negative results (antibiotics)

37°C
Molecular techniques

• Advantages:
 – Culture-independent
 • Detection of pathogen DNA (dead or alive)
 – Rapid diagnosis (4-8 hours)
 • Rapid tailoring of treatment
 – Decreased morbidity and mortality
 – Shorter hospital stay

• Disadvantage:
 • Moderate sensitivity (65-85%) to detect pathogens
Droplet digital PCR

• Novel molecular technique
• Innovative
• Developed to increase sensitivity
Two studies in one

- Feasibility study (does it work?)
- Diagnostic accuracy study (sensitivity?)
Feasibility of ddPCR

- Can we detect pathogen DNA with ddPCR?
- What is the ‘detection limit’ of the ddPCR?
- How fast can we detect pathogen DNA?
Can we detect pathogen DNA with ddPCR?

• Both bacteria and fungi
Detection limit of ddPCR

1 pathogen DNA strand in 40,000 human DNA strands
How fast can we detect pathogen DNA?

Detection time: **4 hours**

Collecting blood → Detection pathogen DNA

FAST
Diagnostic accuracy of ddPCR

- Retrospective cohort of adult intestinal failure patients
- Suspicion of a bloodstream infection
- Admitted to the Radboudumc between 2008-2010
Design diagnostic accuracy study
45 patients suspected of a bloodstream infection:
- 15 had positive blood cultures

<table>
<thead>
<tr>
<th>ddPCR</th>
<th>Blood cultures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>Positive</td>
<td>12</td>
</tr>
<tr>
<td>Negative</td>
<td>3</td>
</tr>
<tr>
<td>Total:</td>
<td>15</td>
</tr>
</tbody>
</table>

12/15 correct: Sensitivity = 80%
Discussion and conclusions

• Novel diagnostic tool for pathogen DNA detection
• Detection of pathogen DNA is possible within 4 hours
• Extremely low detection limit (1 in 40,000)
• Acceptable sensitivity (80%):
 • Further optimization is required
 • Larger (prospective) studies is needed

More information: Breakout Session 3
Sunday 4:20 PM - 5:05 PM
Questions?
Development of a new diagnostic tool for rapid detection of bloodstream infections using ‘droplet digital PCR’ (ddPCR) in patients on home parenteral nutrition

Drs. Yannick Wouters, PhD-student
Dr. Geert Wanten, head intestinal failure unit
Radboudumc, Nijmegen, The Netherlands

June 22, 2019
Results diagnostic accuracy study

• 45 patients suspected of a bloodstream infection:
 • 15 had positive blood cultures
 • 30 had negative blood cultures

<table>
<thead>
<tr>
<th>ddPCR</th>
<th>Blood cultures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>Positive</td>
<td>12</td>
</tr>
<tr>
<td>Negative</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

12/15 correct: Sensitivity = 80%
<table>
<thead>
<tr>
<th></th>
<th>Bloodstream infection</th>
<th>Bacteria</th>
<th>Gram-positive bacteria</th>
<th>Gram-negative bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (95%CI)</td>
<td>80 (52–96)</td>
<td>83 (52–98)</td>
<td>71 (29–96)</td>
<td>67 (22–96)</td>
<td>60 (15–95)</td>
</tr>
<tr>
<td>Specificity (95%CI)</td>
<td>87 (69–96)</td>
<td>82 (65–93)</td>
<td>89 (75–97)</td>
<td>92 (79–98)</td>
<td>100 (91–100)</td>
</tr>
<tr>
<td>LR+ (95%CI)</td>
<td>6.00 (2.33–15.46)</td>
<td>4.58 (2.13–9.87)</td>
<td>6.79 (2.40–19.17)</td>
<td>8.67 (2.54–29.52)</td>
<td>NA</td>
</tr>
<tr>
<td>LR− (95%CI)</td>
<td>0.23 (0.08–0.64)</td>
<td>0.20 (0.06–0.73)</td>
<td>0.32 (0.10–1.04)</td>
<td>0.36 (0.12–1.12)</td>
<td>0.40 (0.14–1.17)</td>
</tr>
<tr>
<td>PPV (95%CI)</td>
<td>75 (54–89)</td>
<td>63 (44–78)</td>
<td>56 (31–78)</td>
<td>57 (28–82)</td>
<td>NA</td>
</tr>
<tr>
<td>NPV (95%CI)</td>
<td>90 (76–96)</td>
<td>93 (79–98)</td>
<td>94 (84–98)</td>
<td>95 (85–98)</td>
<td>95 (85–99)</td>
</tr>
</tbody>
</table>